]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/static/lfxs.ma
notational change for lexs
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / static / lfxs.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/relocation/rtmap_id.ma".
16 include "basic_2/notation/relations/relationstar_4.ma".
17 include "basic_2/relocation/lexs.ma".
18 include "basic_2/static/frees.ma".
19
20 (* GENERIC EXTENSION ON REFERRED ENTRIES OF A CONTEXT-SENSITIVE REALTION ****)
21
22 definition lfxs (R) (T): relation lenv ≝
23                 λL1,L2. ∃∃f. L1 ⊢ 𝐅*⦃T⦄ ≡ f & L1 ⪤*[R, cfull, f] L2.
24
25 interpretation "generic extension on referred entries (local environment)"
26    'RelationStar R T L1 L2 = (lfxs R T L1 L2).
27
28 definition R_frees_confluent: predicate (relation3 lenv term term) ≝
29                               λRN.
30                               ∀f1,L,T1. L ⊢ 𝐅*⦃T1⦄ ≡ f1 → ∀T2. RN L T1 T2 →
31                               ∃∃f2. L ⊢ 𝐅*⦃T2⦄ ≡ f2 & f2 ⊆ f1.
32
33 definition lexs_frees_confluent: relation (relation3 lenv term term) ≝
34                                  λRN,RP.
35                                  ∀f1,L1,T. L1 ⊢ 𝐅*⦃T⦄ ≡ f1 →
36                                  ∀L2. L1 ⪤*[RN, RP, f1] L2 →
37                                  ∃∃f2. L2 ⊢ 𝐅*⦃T⦄ ≡ f2 & f2 ⊆ f1.
38
39 definition R_confluent2_lfxs: relation4 (relation3 lenv term term)
40                                         (relation3 lenv term term) … ≝
41                               λR1,R2,RP1,RP2.
42                               ∀L0,T0,T1. R1 L0 T0 T1 → ∀T2. R2 L0 T0 T2 →
43                               ∀L1. L0 ⪤*[RP1, T0] L1 → ∀L2. L0 ⪤*[RP2, T0] L2 →
44                               ∃∃T. R2 L1 T1 T & R1 L2 T2 T.
45
46 (* Basic properties *********************************************************)
47
48 lemma lfxs_atom: ∀R,I. ⋆ ⪤*[R, ⓪{I}] ⋆.
49 /3 width=3 by lexs_atom, frees_atom, ex2_intro/
50 qed.
51
52 (* Basic_2A1: uses: llpx_sn_sort *)
53 lemma lfxs_sort: ∀R,I,L1,L2,V1,V2,s.
54                  L1 ⪤*[R, ⋆s] L2 → L1.ⓑ{I}V1 ⪤*[R, ⋆s] L2.ⓑ{I}V2.
55 #R #I #L1 #L2 #V1 #V2 #s * /3 width=3 by lexs_push, frees_sort, ex2_intro/
56 qed.
57
58 lemma lfxs_zero: ∀R,I,L1,L2,V1,V2. L1 ⪤*[R, V1] L2 →
59                  R L1 V1 V2 → L1.ⓑ{I}V1 ⪤*[R, #0] L2.ⓑ{I}V2.
60 #R #I #L1 #L2 #V1 #V2 * /3 width=3 by lexs_next, frees_zero, ex2_intro/
61 qed.
62
63 lemma lfxs_lref: ∀R,I,L1,L2,V1,V2,i.
64                  L1 ⪤*[R, #i] L2 → L1.ⓑ{I}V1 ⪤*[R, #⫯i] L2.ⓑ{I}V2.
65 #R #I #L1 #L2 #V1 #V2 #i * /3 width=3 by lexs_push, frees_lref, ex2_intro/
66 qed.
67
68 (* Basic_2A1: uses: llpx_sn_gref *)
69 lemma lfxs_gref: ∀R,I,L1,L2,V1,V2,l.
70                  L1 ⪤*[R, §l] L2 → L1.ⓑ{I}V1 ⪤*[R, §l] L2.ⓑ{I}V2.
71 #R #I #L1 #L2 #V1 #V2 #l * /3 width=3 by lexs_push, frees_gref, ex2_intro/
72 qed.
73
74 lemma lfxs_pair_repl_dx: ∀R,I,L1,L2,T,V,V1.
75                          L1.ⓑ{I}V ⪤*[R, T] L2.ⓑ{I}V1 →
76                          ∀V2. R L1 V V2 →
77                          L1.ⓑ{I}V ⪤*[R, T] L2.ⓑ{I}V2.
78 #R #I #L1 #L2 #T #V #V1 * #f #Hf #HL12 #V2 #HR
79 /3 width=5 by lexs_pair_repl, ex2_intro/
80 qed-.
81
82 lemma lfxs_sym: ∀R. lexs_frees_confluent R cfull →
83                 (∀L1,L2,T1,T2. R L1 T1 T2 → R L2 T2 T1) →
84                 ∀T. symmetric … (lfxs R T).
85 #R #H1R #H2R #T #L1 #L2 * #f1 #Hf1 #HL12 elim (H1R … Hf1 … HL12) -Hf1
86 /4 width=5 by sle_lexs_trans, lexs_sym, ex2_intro/
87 qed-.
88
89 (* Basic_2A1: uses: llpx_sn_co *)
90 lemma lfxs_co: ∀R1,R2. (∀L,T1,T2. R1 L T1 T2 → R2 L T1 T2) →
91                ∀L1,L2,T. L1 ⪤*[R1, T] L2 → L1 ⪤*[R2, T] L2.
92 #R1 #R2 #HR #L1 #L2 #T * /4 width=7 by lexs_co, ex2_intro/
93 qed-.
94
95 lemma lfxs_isid: ∀R1,R2,L1,L2,T1,T2.
96                  (∀f. L1 ⊢ 𝐅*⦃T1⦄ ≡ f → 𝐈⦃f⦄) → 
97                  (∀f. 𝐈⦃f⦄ → L1 ⊢ 𝐅*⦃T2⦄ ≡ f) → 
98                  L1 ⪤*[R1, T1] L2 → L1 ⪤*[R2, T2] L2.
99 #R1 #R2 #L1 #L2 #T1 #T2 #H1 #H2 *
100 /4 width=7 by lexs_co_isid, ex2_intro/
101 qed-.
102
103 (* Basic inversion lemmas ***************************************************)
104
105 lemma lfxs_inv_atom_sn: ∀R,Y2,T. ⋆ ⪤*[R, T] Y2 → Y2 = ⋆.
106 #R #Y2 #T * /2 width=4 by lexs_inv_atom1/
107 qed-.
108
109 lemma lfxs_inv_atom_dx: ∀R,Y1,T. Y1 ⪤*[R, T] ⋆ → Y1 = ⋆.
110 #R #I #Y1 * /2 width=4 by lexs_inv_atom2/
111 qed-.
112
113 lemma lfxs_inv_sort: ∀R,Y1,Y2,s. Y1 ⪤*[R, ⋆s] Y2 →
114                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨
115                      ∃∃I,L1,L2,V1,V2. L1 ⪤*[R, ⋆s] L2 &
116                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
117 #R * [ | #Y1 #I #V1 ] #Y2 #s * #f #H1 #H2
118 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
119 | lapply (frees_inv_sort … H1) -H1 #Hf
120   elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
121   elim (lexs_inv_push1 … H2) -H2 #L2 #V2 #H12 #_ #H destruct
122   /5 width=8 by frees_sort_gen, ex3_5_intro, ex2_intro, or_intror/
123 ]
124 qed-.
125
126 lemma lfxs_inv_zero: ∀R,Y1,Y2. Y1 ⪤*[R, #0] Y2 →
127                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨
128                      ∃∃I,L1,L2,V1,V2. L1 ⪤*[R, V1] L2 & R L1 V1 V2 &
129                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
130 #R #Y1 #Y2 * #f #H1 #H2 elim (frees_inv_zero … H1) -H1 *
131 [ #H #_ lapply (lexs_inv_atom1_aux … H2 H) -H2 /3 width=1 by or_introl, conj/
132 | #I1 #L1 #V1 #g #HV1 #HY1 #Hg elim (lexs_inv_next1_aux … H2 … HY1 Hg) -H2 -Hg
133   /4 width=9 by ex4_5_intro, ex2_intro, or_intror/
134 ]
135 qed-.
136
137 lemma lfxs_inv_lref: ∀R,Y1,Y2,i. Y1 ⪤*[R, #⫯i] Y2 →
138                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨
139                      ∃∃I,L1,L2,V1,V2. L1 ⪤*[R, #i] L2 &
140                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
141 #R #Y1 #Y2 #i * #f #H1 #H2 elim (frees_inv_lref … H1) -H1 *
142 [ #H #_ lapply (lexs_inv_atom1_aux … H2 H) -H2 /3 width=1 by or_introl, conj/
143 | #I1 #L1 #V1 #g #HV1 #HY1 #Hg elim (lexs_inv_push1_aux … H2 … HY1 Hg) -H2 -Hg
144   /4 width=8 by ex3_5_intro, ex2_intro, or_intror/
145 ]
146 qed-.
147
148 lemma lfxs_inv_gref: ∀R,Y1,Y2,l. Y1 ⪤*[R, §l] Y2 →
149                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
150                      ∃∃I,L1,L2,V1,V2. L1 ⪤*[R, §l] L2 &
151                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
152 #R * [ | #Y1 #I #V1 ] #Y2 #l * #f #H1 #H2
153 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
154 | lapply (frees_inv_gref … H1) -H1 #Hf
155   elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
156   elim (lexs_inv_push1 … H2) -H2 #L2 #V2 #H12 #_ #H destruct
157   /5 width=8 by frees_gref_gen, ex3_5_intro, ex2_intro, or_intror/
158 ]
159 qed-.
160
161 (* Basic_2A1: uses: llpx_sn_inv_bind llpx_sn_inv_bind_O *)
162 lemma lfxs_inv_bind: ∀R,p,I,L1,L2,V1,V2,T. L1 ⪤*[R, ⓑ{p,I}V1.T] L2 → R L1 V1 V2 →
163                      L1 ⪤*[R, V1] L2 ∧ L1.ⓑ{I}V1 ⪤*[R, T] L2.ⓑ{I}V2.
164 #R #p #I #L1 #L2 #V1 #V2 #T * #f #Hf #HL #HV elim (frees_inv_bind … Hf) -Hf
165 /6 width=6 by sle_lexs_trans, lexs_inv_tl, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
166 qed-.
167
168 (* Basic_2A1: uses: llpx_sn_inv_flat *)
169 lemma lfxs_inv_flat: ∀R,I,L1,L2,V,T. L1 ⪤*[R, ⓕ{I}V.T] L2 →
170                      L1 ⪤*[R, V] L2 ∧ L1 ⪤*[R, T] L2.
171 #R #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_flat … Hf) -Hf
172 /5 width=6 by sle_lexs_trans, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
173 qed-.
174
175 (* Advanced inversion lemmas ************************************************)
176
177 lemma lfxs_inv_sort_pair_sn: ∀R,I,Y2,L1,V1,s. L1.ⓑ{I}V1 ⪤*[R, ⋆s] Y2 →
178                              ∃∃L2,V2. L1 ⪤*[R, ⋆s] L2 & Y2 = L2.ⓑ{I}V2.
179 #R #I #Y2 #L1 #V1 #s #H elim (lfxs_inv_sort … H) -H *
180 [ #H destruct
181 | #J #Y1 #L2 #X1 #V2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
182 ]
183 qed-.
184
185 lemma lfxs_inv_sort_pair_dx: ∀R,I,Y1,L2,V2,s. Y1 ⪤*[R, ⋆s] L2.ⓑ{I}V2 →
186                              ∃∃L1,V1. L1 ⪤*[R, ⋆s] L2 & Y1 = L1.ⓑ{I}V1.
187 #R #I #Y1 #L2 #V2 #s #H elim (lfxs_inv_sort … H) -H *
188 [ #_ #H destruct
189 | #J #L1 #Y2 #V1 #X2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
190 ]
191 qed-.
192
193 lemma lfxs_inv_zero_pair_sn: ∀R,I,Y2,L1,V1. L1.ⓑ{I}V1 ⪤*[R, #0] Y2 →
194                              ∃∃L2,V2. L1 ⪤*[R, V1] L2 & R L1 V1 V2 &
195                                       Y2 = L2.ⓑ{I}V2.
196 #R #I #Y2 #L1 #V1 #H elim (lfxs_inv_zero … H) -H *
197 [ #H destruct
198 | #J #Y1 #L2 #X1 #V2 #HV1 #HV12 #H1 #H2 destruct
199   /2 width=5 by ex3_2_intro/
200 ]
201 qed-.
202
203 lemma lfxs_inv_zero_pair_dx: ∀R,I,Y1,L2,V2. Y1 ⪤*[R, #0] L2.ⓑ{I}V2 →
204                              ∃∃L1,V1. L1 ⪤*[R, V1] L2 & R L1 V1 V2 &
205                                       Y1 = L1.ⓑ{I}V1.
206 #R #I #Y1 #L2 #V2 #H elim (lfxs_inv_zero … H) -H *
207 [ #_ #H destruct
208 | #J #L1 #Y2 #V1 #X2 #HV1 #HV12 #H1 #H2 destruct
209   /2 width=5 by ex3_2_intro/
210 ]
211 qed-.
212
213 lemma lfxs_inv_lref_pair_sn: ∀R,I,Y2,L1,V1,i. L1.ⓑ{I}V1 ⪤*[R, #⫯i] Y2 →
214                              ∃∃L2,V2. L1 ⪤*[R, #i] L2 & Y2 = L2.ⓑ{I}V2.
215 #R #I #Y2 #L1 #V1 #i #H elim (lfxs_inv_lref … H) -H *
216 [ #H destruct
217 | #J #Y1 #L2 #X1 #V2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
218 ]
219 qed-.
220
221 lemma lfxs_inv_lref_pair_dx: ∀R,I,Y1,L2,V2,i. Y1 ⪤*[R, #⫯i] L2.ⓑ{I}V2 →
222                              ∃∃L1,V1. L1 ⪤*[R, #i] L2 & Y1 = L1.ⓑ{I}V1.
223 #R #I #Y1 #L2 #V2 #i #H elim (lfxs_inv_lref … H) -H *
224 [ #_ #H destruct
225 | #J #L1 #Y2 #V1 #X2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
226 ]
227 qed-.
228
229 lemma lfxs_inv_gref_pair_sn: ∀R,I,Y2,L1,V1,l. L1.ⓑ{I}V1 ⪤*[R, §l] Y2 →
230                              ∃∃L2,V2. L1 ⪤*[R, §l] L2 & Y2 = L2.ⓑ{I}V2.
231 #R #I #Y2 #L1 #V1 #l #H elim (lfxs_inv_gref … H) -H *
232 [ #H destruct
233 | #J #Y1 #L2 #X1 #V2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
234 ]
235 qed-.
236
237 lemma lfxs_inv_gref_pair_dx: ∀R,I,Y1,L2,V2,l. Y1 ⪤*[R, §l] L2.ⓑ{I}V2 →
238                              ∃∃L1,V1. L1 ⪤*[R, §l] L2 & Y1 = L1.ⓑ{I}V1.
239 #R #I #Y1 #L2 #V2 #l #H elim (lfxs_inv_gref … H) -H *
240 [ #_ #H destruct
241 | #J #L1 #Y2 #V1 #X2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
242 ]
243 qed-.
244
245 (* Basic forward lemmas *****************************************************)
246
247 (* Basic_2A1: uses: llpx_sn_fwd_pair_sn llpx_sn_fwd_bind_sn llpx_sn_fwd_flat_sn *)
248 lemma lfxs_fwd_pair_sn: ∀R,I,L1,L2,V,T. L1 ⪤*[R, ②{I}V.T] L2 → L1 ⪤*[R, V] L2.
249 #R * [ #p ] #I #L1 #L2 #V #T * #f #Hf #HL
250 [ elim (frees_inv_bind … Hf) | elim (frees_inv_flat … Hf) ] -Hf
251 /4 width=6 by sle_lexs_trans, sor_inv_sle_sn, ex2_intro/
252 qed-.
253
254 (* Basic_2A1: uses: llpx_sn_fwd_bind_dx llpx_sn_fwd_bind_O_dx *)
255 lemma lfxs_fwd_bind_dx: ∀R,p,I,L1,L2,V1,V2,T. L1 ⪤*[R, ⓑ{p,I}V1.T] L2 →
256                         R L1 V1 V2 → L1.ⓑ{I}V1 ⪤*[R, T] L2.ⓑ{I}V2.
257 #R #p #I #L1 #L2 #V1 #V2 #T #H #HV elim (lfxs_inv_bind … H HV) -H -HV //
258 qed-.
259
260 (* Basic_2A1: uses: llpx_sn_fwd_flat_dx *)
261 lemma lfxs_fwd_flat_dx: ∀R,I,L1,L2,V,T. L1 ⪤*[R, ⓕ{I}V.T] L2 → L1 ⪤*[R, T] L2.
262 #R #I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H //
263 qed-.
264
265 lemma lfxs_fwd_dx: ∀R,I,L1,K2,T,V2. L1 ⪤*[R, T] K2.ⓑ{I}V2 →
266                    ∃∃K1,V1. L1 = K1.ⓑ{I}V1.
267 #R #I #L1 #K2 #T #V2 * #f elim (pn_split f) * #g #Hg #_ #Hf destruct
268 [ elim (lexs_inv_push2 … Hf) | elim (lexs_inv_next2 … Hf) ] -Hf #K1 #V1 #_ #_ #H destruct
269 /2 width=3 by ex1_2_intro/
270 qed-.
271
272 (* Basic_2A1: removed theorems 9:
273               llpx_sn_skip llpx_sn_lref llpx_sn_free 
274               llpx_sn_fwd_lref
275               llpx_sn_Y llpx_sn_ge_up llpx_sn_ge 
276               llpx_sn_fwd_drop_sn llpx_sn_fwd_drop_dx      
277 *)