]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/static/lfxs.ma
- exclusion binder added in local environments
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / static / lfxs.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/relocation/rtmap_id.ma".
16 include "basic_2/notation/relations/relationstar_4.ma".
17 include "basic_2/syntax/lenv_ext2.ma".
18 include "basic_2/relocation/lexs.ma".
19 include "basic_2/static/frees.ma".
20
21 (* GENERIC EXTENSION ON REFERRED ENTRIES OF A CONTEXT-SENSITIVE REALTION ****)
22
23 definition lfxs (R) (T): relation lenv ≝
24                 λL1,L2. ∃∃f. L1 ⊢ 𝐅*⦃T⦄ ≡ f & L1 ⪤*[cext2 R, cfull, f] L2.
25
26 interpretation "generic extension on referred entries (local environment)"
27    'RelationStar R T L1 L2 = (lfxs R T L1 L2).
28
29 definition R_frees_confluent: predicate (relation3 …) ≝
30                               λRN.
31                               ∀f1,L,T1. L ⊢ 𝐅*⦃T1⦄ ≡ f1 → ∀T2. RN L T1 T2 →
32                               ∃∃f2. L ⊢ 𝐅*⦃T2⦄ ≡ f2 & f2 ⊆ f1.
33
34 definition lexs_frees_confluent: relation (relation3 …) ≝
35                                  λRN,RP.
36                                  ∀f1,L1,T. L1 ⊢ 𝐅*⦃T⦄ ≡ f1 →
37                                  ∀L2. L1 ⪤*[RN, RP, f1] L2 →
38                                  ∃∃f2. L2 ⊢ 𝐅*⦃T⦄ ≡ f2 & f2 ⊆ f1.
39
40 definition R_confluent2_lfxs: relation4 (relation3 lenv term term)
41                                         (relation3 lenv term term) … ≝
42                               λR1,R2,RP1,RP2.
43                               ∀L0,T0,T1. R1 L0 T0 T1 → ∀T2. R2 L0 T0 T2 →
44                               ∀L1. L0 ⪤*[RP1, T0] L1 → ∀L2. L0 ⪤*[RP2, T0] L2 →
45                               ∃∃T. R2 L1 T1 T & R1 L2 T2 T.
46
47 (* Basic properties *********************************************************)
48
49 lemma lfxs_atom: ∀R,I. ⋆ ⪤*[R, ⓪{I}] ⋆.
50 #R * /3 width=3 by frees_sort, frees_atom, frees_gref, lexs_atom, ex2_intro/
51 qed.
52
53 (* Basic_2A1: uses: llpx_sn_sort *)
54 lemma lfxs_sort: ∀R,I1,I2,L1,L2,s.
55                  L1 ⪤*[R, ⋆s] L2 → L1.ⓘ{I1} ⪤*[R, ⋆s] L2.ⓘ{I2}.
56 #R #I1 #I2 #L1 #L2 #s * #f #Hf #H12
57 lapply (frees_inv_sort … Hf) -Hf
58 /4 width=3 by frees_sort, lexs_push, isid_push, ex2_intro/
59 qed.
60
61 lemma lfxs_pair: ∀R,I,L1,L2,V1,V2. L1 ⪤*[R, V1] L2 →
62                  R L1 V1 V2 → L1.ⓑ{I}V1 ⪤*[R, #0] L2.ⓑ{I}V2.
63 #R #I1 #I2 #L1 #L2 #V1 *
64 /4 width=3 by ext2_pair, frees_pair, lexs_next, ex2_intro/
65 qed.
66
67 lemma lfxs_unit: ∀R,f,I,L1,L2. 𝐈⦃f⦄ → L1 ⪤*[cext2 R, cfull, f] L2 →
68                  L1.ⓤ{I} ⪤*[R, #0] L2.ⓤ{I}.
69 /4 width=3 by frees_unit, lexs_next, ext2_unit, ex2_intro/ qed.
70
71 lemma lfxs_lref: ∀R,I1,I2,L1,L2,i.
72                  L1 ⪤*[R, #i] L2 → L1.ⓘ{I1} ⪤*[R, #⫯i] L2.ⓘ{I2}.
73 #R #I1 #I2 #L1 #L2 #i * /3 width=3 by lexs_push, frees_lref, ex2_intro/
74 qed.
75
76 (* Basic_2A1: uses: llpx_sn_gref *)
77 lemma lfxs_gref: ∀R,I1,I2,L1,L2,l.
78                  L1 ⪤*[R, §l] L2 → L1.ⓘ{I1} ⪤*[R, §l] L2.ⓘ{I2}.
79 #R #I1 #I2 #L1 #L2 #l * #f #Hf #H12
80 lapply (frees_inv_gref … Hf) -Hf
81 /4 width=3 by frees_gref, lexs_push, isid_push, ex2_intro/
82 qed.
83
84 lemma lfxs_bind_repl_dx: ∀R,I,I1,L1,L2,T.
85                          L1.ⓘ{I} ⪤*[R, T] L2.ⓘ{I1} →
86                          ∀I2. cext2 R L1 I I2 →
87                          L1.ⓘ{I} ⪤*[R, T] L2.ⓘ{I2}.
88 #R #I #I1 #L1 #L2 #T * #f #Hf #HL12 #I2 #HR
89 /3 width=5 by lexs_pair_repl, ex2_intro/
90 qed-.
91
92 lemma lfxs_sym: ∀R. lexs_frees_confluent (cext2 R) cfull →
93                 (∀L1,L2,T1,T2. R L1 T1 T2 → R L2 T2 T1) →
94                 ∀T. symmetric … (lfxs R T).
95 #R #H1R #H2R #T #L1 #L2 * #f1 #Hf1 #HL12 elim (H1R … Hf1 … HL12) -Hf1
96 /5 width=5 by sle_lexs_trans, lexs_sym, cext2_sym, ex2_intro/
97 qed-.
98
99 (* Basic_2A1: uses: llpx_sn_co *)
100 lemma lfxs_co: ∀R1,R2. (∀L,T1,T2. R1 L T1 T2 → R2 L T1 T2) →
101                ∀L1,L2,T. L1 ⪤*[R1, T] L2 → L1 ⪤*[R2, T] L2.
102 #R1 #R2 #HR #L1 #L2 #T * /5 width=7 by lexs_co, cext2_co, ex2_intro/
103 qed-.
104
105 lemma lfxs_isid: ∀R1,R2,L1,L2,T1,T2.
106                  (∀f. L1 ⊢ 𝐅*⦃T1⦄ ≡ f → 𝐈⦃f⦄) → 
107                  (∀f. 𝐈⦃f⦄ → L1 ⊢ 𝐅*⦃T2⦄ ≡ f) → 
108                  L1 ⪤*[R1, T1] L2 → L1 ⪤*[R2, T2] L2.
109 #R1 #R2 #L1 #L2 #T1 #T2 #H1 #H2 *
110 /4 width=7 by lexs_co_isid, ex2_intro/
111 qed-.
112
113 (* Basic inversion lemmas ***************************************************)
114
115 lemma lfxs_inv_atom_sn: ∀R,Y2,T. ⋆ ⪤*[R, T] Y2 → Y2 = ⋆.
116 #R #Y2 #T * /2 width=4 by lexs_inv_atom1/
117 qed-.
118
119 lemma lfxs_inv_atom_dx: ∀R,Y1,T. Y1 ⪤*[R, T] ⋆ → Y1 = ⋆.
120 #R #I #Y1 * /2 width=4 by lexs_inv_atom2/
121 qed-.
122
123 lemma lfxs_inv_sort: ∀R,Y1,Y2,s. Y1 ⪤*[R, ⋆s] Y2 →
124                      ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
125                       | ∃∃I1,I2,L1,L2. L1 ⪤*[R, ⋆s] L2 &
126                                        Y1 = L1.ⓘ{I1} & Y2 = L2.ⓘ{I2}.
127 #R * [ | #Y1 #I1 ] #Y2 #s * #f #H1 #H2
128 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
129 | lapply (frees_inv_sort … H1) -H1 #Hf
130   elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
131   elim (lexs_inv_push1 … H2) -H2 #I2 #L2 #H12 #_ #H destruct
132   /5 width=7 by frees_sort, ex3_4_intro, ex2_intro, or_intror/
133 ]
134 qed-.
135
136 lemma lfxs_inv_zero: ∀R,Y1,Y2. Y1 ⪤*[R, #0] Y2 →
137                      ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
138                       | ∃∃I,L1,L2,V1,V2. L1 ⪤*[R, V1] L2 & R L1 V1 V2 &
139                                          Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2
140                       | ∃∃f,I,L1,L2. 𝐈⦃f⦄ & L1 ⪤*[cext2 R, cfull, f] L2 &
141                                      Y1 = L1.ⓤ{I} & Y2 = L2.ⓤ{I}.
142 #R * [ | #Y1 * #I1 [ | #X ] ] #Y2 * #f #H1 #H2
143 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or3_intro0, conj/
144 | elim (frees_inv_unit … H1) -H1 #g #HX #H destruct
145   elim (lexs_inv_next1 … H2) -H2 #I2 #L2 #HL12 #H #H2 destruct
146   >(ext2_inv_unit_sn … H) -H /3 width=8 by or3_intro2, ex4_4_intro/
147 | elim (frees_inv_pair … H1) -H1 #g #Hg #H destruct
148   elim (lexs_inv_next1 … H2) -H2 #Z2 #L2 #HL12 #H
149   elim (ext2_inv_pair_sn … H) -H
150   /4 width=9 by or3_intro1, ex4_5_intro, ex2_intro/
151 ]
152 qed-.
153
154 lemma lfxs_inv_lref: ∀R,Y1,Y2,i. Y1 ⪤*[R, #⫯i] Y2 →
155                      ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
156                       | ∃∃I1,I2,L1,L2. L1 ⪤*[R, #i] L2 &
157                                        Y1 = L1.ⓘ{I1} & Y2 = L2.ⓘ{I2}.
158 #R * [ | #Y1 #I1 ] #Y2 #i * #f #H1 #H2
159 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
160 | elim (frees_inv_lref … H1) -H1 #g #Hg #H destruct
161   elim (lexs_inv_push1 … H2) -H2
162   /4 width=7 by ex3_4_intro, ex2_intro, or_intror/
163 ]
164 qed-.
165
166 lemma lfxs_inv_gref: ∀R,Y1,Y2,l. Y1 ⪤*[R, §l] Y2 →
167                      ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
168                       | ∃∃I1,I2,L1,L2. L1 ⪤*[R, §l] L2 &
169                                        Y1 = L1.ⓘ{I1} & Y2 = L2.ⓘ{I2}.
170 #R * [ | #Y1 #I1 ] #Y2 #l * #f #H1 #H2
171 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
172 | lapply (frees_inv_gref … H1) -H1 #Hf
173   elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
174   elim (lexs_inv_push1 … H2) -H2 #I2 #L2 #H12 #_ #H destruct
175   /5 width=7 by frees_gref, ex3_4_intro, ex2_intro, or_intror/
176 ]
177 qed-.
178
179 (* Basic_2A1: uses: llpx_sn_inv_bind llpx_sn_inv_bind_O *)
180 lemma lfxs_inv_bind: ∀R,p,I,L1,L2,V1,V2,T. L1 ⪤*[R, ⓑ{p,I}V1.T] L2 → R L1 V1 V2 →
181                      L1 ⪤*[R, V1] L2 ∧ L1.ⓑ{I}V1 ⪤*[R, T] L2.ⓑ{I}V2.
182 #R #p #I #L1 #L2 #V1 #V2 #T * #f #Hf #HL #HV elim (frees_inv_bind … Hf) -Hf
183 /6 width=6 by sle_lexs_trans, lexs_inv_tl, ext2_pair, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
184 qed-.
185
186 (* Basic_2A1: uses: llpx_sn_inv_flat *)
187 lemma lfxs_inv_flat: ∀R,I,L1,L2,V,T. L1 ⪤*[R, ⓕ{I}V.T] L2 →
188                      L1 ⪤*[R, V] L2 ∧ L1 ⪤*[R, T] L2.
189 #R #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_flat … Hf) -Hf
190 /5 width=6 by sle_lexs_trans, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
191 qed-.
192
193 (* Advanced inversion lemmas ************************************************)
194
195 lemma lfxs_inv_sort_bind_sn: ∀R,I1,K1,L2,s. K1.ⓘ{I1} ⪤*[R, ⋆s] L2 →
196                              ∃∃I2,K2. K1 ⪤*[R, ⋆s] K2 & L2 = K2.ⓘ{I2}.
197 #R #I1 #K1 #L2 #s #H elim (lfxs_inv_sort … H) -H *
198 [ #H destruct
199 | #Z1 #I2 #Y1 #K2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
200 ]
201 qed-.
202
203 lemma lfxs_inv_sort_bind_dx: ∀R,I2,K2,L1,s. L1 ⪤*[R, ⋆s] K2.ⓘ{I2} →
204                              ∃∃I1,K1. K1 ⪤*[R, ⋆s] K2 & L1 = K1.ⓘ{I1}.
205 #R #I2 #K2 #L1 #s #H elim (lfxs_inv_sort … H) -H *
206 [ #_ #H destruct
207 | #I1 #Z2 #K1 #Y2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
208 ]
209 qed-.
210
211 lemma lfxs_inv_zero_pair_sn: ∀R,I,L2,K1,V1. K1.ⓑ{I}V1 ⪤*[R, #0] L2 →
212                              ∃∃K2,V2. K1 ⪤*[R, V1] K2 & R K1 V1 V2 &
213                                       L2 = K2.ⓑ{I}V2.
214 #R #I #L2 #K1 #V1 #H elim (lfxs_inv_zero … H) -H *
215 [ #H destruct
216 | #Z #Y1 #K2 #X1 #V2 #HK12 #HV12 #H1 #H2 destruct
217   /2 width=5 by ex3_2_intro/
218 | #f #Z #Y1 #Y2 #_ #_ #H destruct
219 ]
220 qed-.
221
222 lemma lfxs_inv_zero_pair_dx: ∀R,I,L1,K2,V2. L1 ⪤*[R, #0] K2.ⓑ{I}V2 →
223                              ∃∃K1,V1. K1 ⪤*[R, V1] K2 & R K1 V1 V2 &
224                                       L1 = K1.ⓑ{I}V1.
225 #R #I #L1 #K2 #V2 #H elim (lfxs_inv_zero … H) -H *
226 [ #_ #H destruct
227 | #Z #K1 #Y2 #V1 #X2 #HK12 #HV12 #H1 #H2 destruct
228   /2 width=5 by ex3_2_intro/
229 | #f #Z #Y1 #Y2 #_ #_ #_ #H destruct
230 ]
231 qed-.
232
233 lemma lfxs_inv_zero_unit_sn: ∀R,I,K1,L2. K1.ⓤ{I} ⪤*[R, #0] L2 →
234                              ∃∃f,K2. 𝐈⦃f⦄ & K1 ⪤*[cext2 R, cfull, f] K2 &
235                                      L2 = K2.ⓤ{I}.
236 #R #I #K1 #L2 #H elim (lfxs_inv_zero … H) -H *
237 [ #H destruct
238 | #Z #Y1 #Y2 #X1 #X2 #_ #_ #H destruct
239 | #f #Z #Y1 #K2 #Hf #HK12 #H1 #H2 destruct /2 width=5 by ex3_2_intro/
240 ]
241 qed-.
242
243 lemma lfxs_inv_zero_unit_dx: ∀R,I,L1,K2. L1 ⪤*[R, #0] K2.ⓤ{I} →
244                              ∃∃f,K1. 𝐈⦃f⦄ & K1 ⪤*[cext2 R, cfull, f] K2 &
245                                      L1 = K1.ⓤ{I}.
246 #R #I #L1 #K2 #H elim (lfxs_inv_zero … H) -H *
247 [ #_ #H destruct
248 | #Z #Y1 #Y2 #X1 #X2 #_ #_ #_ #H destruct
249 | #f #Z #K1 #Y2 #Hf #HK12 #H1 #H2 destruct /2 width=5 by ex3_2_intro/
250 ]
251 qed-.
252
253 lemma lfxs_inv_lref_bind_sn: ∀R,I1,K1,L2,i. K1.ⓘ{I1} ⪤*[R, #⫯i] L2 →
254                              ∃∃I2,K2. K1 ⪤*[R, #i] K2 & L2 = K2.ⓘ{I2}.
255 #R #I1 #K1 #L2 #i #H elim (lfxs_inv_lref … H) -H *
256 [ #H destruct
257 | #Z1 #I2 #Y1 #K2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
258 ]
259 qed-.
260
261 lemma lfxs_inv_lref_bind_dx: ∀R,I2,K2,L1,i. L1 ⪤*[R, #⫯i] K2.ⓘ{I2} →
262                              ∃∃I1,K1. K1 ⪤*[R, #i] K2 & L1 = K1.ⓘ{I1}.
263 #R #I2 #K2 #L1 #i #H elim (lfxs_inv_lref … H) -H *
264 [ #_ #H destruct
265 | #I1 #Z2 #K1 #Y2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
266 ]
267 qed-.
268
269 lemma lfxs_inv_gref_bind_sn: ∀R,I1,K1,L2,l. K1.ⓘ{I1} ⪤*[R, §l] L2 →
270                              ∃∃I2,K2. K1 ⪤*[R, §l] K2 & L2 = K2.ⓘ{I2}.
271 #R #I1 #K1 #L2 #l #H elim (lfxs_inv_gref … H) -H *
272 [ #H destruct
273 | #Z1 #I2 #Y1 #K2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
274 ]
275 qed-.
276
277 lemma lfxs_inv_gref_bind_dx: ∀R,I2,K2,L1,l. L1 ⪤*[R, §l] K2.ⓘ{I2} →
278                              ∃∃I1,K1. K1 ⪤*[R, §l] K2 & L1 = K1.ⓘ{I1}.
279 #R #I2 #K2 #L1 #l #H elim (lfxs_inv_gref … H) -H *
280 [ #_ #H destruct
281 | #I1 #Z2 #K1 #Y2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
282 ]
283 qed-.
284
285 (* Basic forward lemmas *****************************************************)
286
287 (* Basic_2A1: uses: llpx_sn_fwd_pair_sn llpx_sn_fwd_bind_sn llpx_sn_fwd_flat_sn *)
288 lemma lfxs_fwd_pair_sn: ∀R,I,L1,L2,V,T. L1 ⪤*[R, ②{I}V.T] L2 → L1 ⪤*[R, V] L2.
289 #R * [ #p ] #I #L1 #L2 #V #T * #f #Hf #HL
290 [ elim (frees_inv_bind … Hf) | elim (frees_inv_flat … Hf) ] -Hf
291 /4 width=6 by sle_lexs_trans, sor_inv_sle_sn, ex2_intro/
292 qed-.
293
294 (* Basic_2A1: uses: llpx_sn_fwd_bind_dx llpx_sn_fwd_bind_O_dx *)
295 lemma lfxs_fwd_bind_dx: ∀R,p,I,L1,L2,V1,V2,T. L1 ⪤*[R, ⓑ{p,I}V1.T] L2 →
296                         R L1 V1 V2 → L1.ⓑ{I}V1 ⪤*[R, T] L2.ⓑ{I}V2.
297 #R #p #I #L1 #L2 #V1 #V2 #T #H #HV elim (lfxs_inv_bind … H HV) -H -HV //
298 qed-.
299
300 (* Basic_2A1: uses: llpx_sn_fwd_flat_dx *)
301 lemma lfxs_fwd_flat_dx: ∀R,I,L1,L2,V,T. L1 ⪤*[R, ⓕ{I}V.T] L2 → L1 ⪤*[R, T] L2.
302 #R #I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H //
303 qed-.
304
305 lemma lfxs_fwd_dx: ∀R,I2,L1,K2,T. L1 ⪤*[R, T] K2.ⓘ{I2} →
306                    ∃∃I1,K1. L1 = K1.ⓘ{I1}.
307 #R #I2 #L1 #K2 #T * #f elim (pn_split f) * #g #Hg #_ #Hf destruct
308 [ elim (lexs_inv_push2 … Hf) | elim (lexs_inv_next2 … Hf) ] -Hf #I1 #K1 #_ #_ #H destruct
309 /2 width=3 by ex1_2_intro/
310 qed-.
311
312 (* Basic_2A1: removed theorems 9:
313               llpx_sn_skip llpx_sn_lref llpx_sn_free 
314               llpx_sn_fwd_lref
315               llpx_sn_Y llpx_sn_ge_up llpx_sn_ge 
316               llpx_sn_fwd_drop_sn llpx_sn_fwd_drop_dx      
317 *)