]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/static/lfxs.ma
- updated equivalence on referred entries: it nust be degree-based
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / static / lfxs.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/relocation/rtmap_id.ma".
16 include "basic_2/notation/relations/relationstar_4.ma".
17 include "basic_2/relocation/lexs.ma".
18 include "basic_2/static/frees.ma".
19
20 (* GENERIC EXTENSION ON REFERRED ENTRIES OF A CONTEXT-SENSITIVE REALTION ****)
21
22 definition lfxs (R) (T): relation lenv ≝
23                 λL1,L2. ∃∃f. L1 ⊢ 𝐅*⦃T⦄ ≡ f & L1 ⦻*[R, cfull, f] L2.
24
25 interpretation "generic extension on referred entries (local environment)"
26    'RelationStar R T L1 L2 = (lfxs R T L1 L2).
27
28 definition R_frees_confluent: predicate (relation3 lenv term term) ≝
29                               λRN.
30                               ∀f1,L,T1. L ⊢ 𝐅*⦃T1⦄ ≡ f1 → ∀T2. RN L T1 T2 →
31                               ∃∃f2. L ⊢ 𝐅*⦃T2⦄ ≡ f2 & f2 ⊆ f1.
32
33 definition lexs_frees_confluent: relation (relation3 lenv term term) ≝
34                                  λRN,RP.
35                                  ∀f1,L1,T. L1 ⊢ 𝐅*⦃T⦄ ≡ f1 →
36                                  ∀L2. L1 ⦻*[RN, RP, f1] L2 →
37                                  ∃∃f2. L2 ⊢ 𝐅*⦃T⦄ ≡ f2 & f2 ⊆ f1.
38
39 definition R_confluent2_lfxs: relation4 (relation3 lenv term term)
40                                         (relation3 lenv term term) … ≝
41                               λR1,R2,RP1,RP2.
42                               ∀L0,T0,T1. R1 L0 T0 T1 → ∀T2. R2 L0 T0 T2 →
43                               ∀L1. L0 ⦻*[RP1, T0] L1 → ∀L2. L0 ⦻*[RP2, T0] L2 →
44                               ∃∃T. R2 L1 T1 T & R1 L2 T2 T.
45
46 (* Basic properties ***********************************************************)
47
48 lemma lfxs_atom: ∀R,I. ⋆ ⦻*[R, ⓪{I}] ⋆.
49 /3 width=3 by lexs_atom, frees_atom, ex2_intro/
50 qed.
51
52 lemma lfxs_sort: ∀R,I,L1,L2,V1,V2,s.
53                  L1 ⦻*[R, ⋆s] L2 → L1.ⓑ{I}V1 ⦻*[R, ⋆s] L2.ⓑ{I}V2.
54 #R #I #L1 #L2 #V1 #V2 #s * /3 width=3 by lexs_push, frees_sort, ex2_intro/
55 qed.
56
57 lemma lfxs_zero: ∀R,I,L1,L2,V1,V2. L1 ⦻*[R, V1] L2 →
58                  R L1 V1 V2 → L1.ⓑ{I}V1 ⦻*[R, #0] L2.ⓑ{I}V2.
59 #R #I #L1 #L2 #V1 #V2 * /3 width=3 by lexs_next, frees_zero, ex2_intro/
60 qed.
61
62 lemma lfxs_lref: ∀R,I,L1,L2,V1,V2,i.
63                  L1 ⦻*[R, #i] L2 → L1.ⓑ{I}V1 ⦻*[R, #⫯i] L2.ⓑ{I}V2.
64 #R #I #L1 #L2 #V1 #V2 #i * /3 width=3 by lexs_push, frees_lref, ex2_intro/
65 qed.
66
67 lemma lfxs_gref: ∀R,I,L1,L2,V1,V2,l.
68                  L1 ⦻*[R, §l] L2 → L1.ⓑ{I}V1 ⦻*[R, §l] L2.ⓑ{I}V2.
69 #R #I #L1 #L2 #V1 #V2 #l * /3 width=3 by lexs_push, frees_gref, ex2_intro/
70 qed.
71
72 lemma lfxs_pair_repl_dx: ∀R,I,L1,L2,T,V,V1.
73                          L1.ⓑ{I}V ⦻*[R, T] L2.ⓑ{I}V1 →
74                          ∀V2. R L1 V V2 →
75                          L1.ⓑ{I}V ⦻*[R, T] L2.ⓑ{I}V2.
76 #R #I #L1 #L2 #T #V #V1 * #f #Hf #HL12 #V2 #HR
77 /3 width=5 by lexs_pair_repl, ex2_intro/
78 qed-.
79
80 lemma lfxs_sym: ∀R. lexs_frees_confluent R cfull →
81                 (∀L1,L2,T1,T2. R L1 T1 T2 → R L2 T2 T1) →
82                 ∀T. symmetric … (lfxs R T).
83 #R #H1R #H2R #T #L1 #L2 * #f1 #Hf1 #HL12 elim (H1R … Hf1 … HL12) -Hf1
84 /4 width=5 by sle_lexs_trans, lexs_sym, ex2_intro/
85 qed-.
86
87 lemma lfxs_co: ∀R1,R2. (∀L,T1,T2. R1 L T1 T2 → R2 L T1 T2) →
88                ∀L1,L2,T. L1 ⦻*[R1, T] L2 → L1 ⦻*[R2, T] L2.
89 #R1 #R2 #HR #L1 #L2 #T * /4 width=7 by lexs_co, ex2_intro/
90 qed-.
91
92 (* Basic inversion lemmas ***************************************************)
93
94 lemma lfxs_inv_atom_sn: ∀R,I,Y2. ⋆ ⦻*[R, ⓪{I}] Y2 → Y2 = ⋆.
95 #R #I #Y2 * /2 width=4 by lexs_inv_atom1/
96 qed-.
97
98 lemma lfxs_inv_atom_dx: ∀R,I,Y1. Y1 ⦻*[R, ⓪{I}] ⋆ → Y1 = ⋆.
99 #R #I #Y1 * /2 width=4 by lexs_inv_atom2/
100 qed-.
101
102 lemma lfxs_inv_sort: ∀R,Y1,Y2,s. Y1 ⦻*[R, ⋆s] Y2 →
103                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨
104                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, ⋆s] L2 &
105                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
106 #R * [ | #Y1 #I #V1 ] #Y2 #s * #f #H1 #H2
107 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
108 | lapply (frees_inv_sort … H1) -H1 #Hf
109   elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
110   elim (lexs_inv_push1 … H2) -H2 #L2 #V2 #H12 #_ #H destruct
111   /5 width=8 by frees_sort_gen, ex3_5_intro, ex2_intro, or_intror/
112 ]
113 qed-.
114
115 lemma lfxs_inv_zero: ∀R,Y1,Y2. Y1 ⦻*[R, #0] Y2 →
116                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨
117                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
118                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
119 #R #Y1 #Y2 * #f #H1 #H2 elim (frees_inv_zero … H1) -H1 *
120 [ #H #_ lapply (lexs_inv_atom1_aux … H2 H) -H2 /3 width=1 by or_introl, conj/
121 | #I1 #L1 #V1 #g #HV1 #HY1 #Hg elim (lexs_inv_next1_aux … H2 … HY1 Hg) -H2 -Hg
122   /4 width=9 by ex4_5_intro, ex2_intro, or_intror/
123 ]
124 qed-.
125
126 lemma lfxs_inv_lref: ∀R,Y1,Y2,i. Y1 ⦻*[R, #⫯i] Y2 →
127                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨
128                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, #i] L2 &
129                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
130 #R #Y1 #Y2 #i * #f #H1 #H2 elim (frees_inv_lref … H1) -H1 *
131 [ #H #_ lapply (lexs_inv_atom1_aux … H2 H) -H2 /3 width=1 by or_introl, conj/
132 | #I1 #L1 #V1 #g #HV1 #HY1 #Hg elim (lexs_inv_push1_aux … H2 … HY1 Hg) -H2 -Hg
133   /4 width=8 by ex3_5_intro, ex2_intro, or_intror/
134 ]
135 qed-.
136
137 lemma lfxs_inv_gref: ∀R,Y1,Y2,l. Y1 ⦻*[R, §l] Y2 →
138                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
139                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, §l] L2 &
140                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
141 #R * [ | #Y1 #I #V1 ] #Y2 #l * #f #H1 #H2
142 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
143 | lapply (frees_inv_gref … H1) -H1 #Hf
144   elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
145   elim (lexs_inv_push1 … H2) -H2 #L2 #V2 #H12 #_ #H destruct
146   /5 width=8 by frees_gref_gen, ex3_5_intro, ex2_intro, or_intror/
147 ]
148 qed-.
149
150 lemma lfxs_inv_bind: ∀R,p,I,L1,L2,V1,V2,T. L1 ⦻*[R, ⓑ{p,I}V1.T] L2 → R L1 V1 V2 →
151                      L1 ⦻*[R, V1] L2 ∧ L1.ⓑ{I}V1 ⦻*[R, T] L2.ⓑ{I}V2.
152 #R #p #I #L1 #L2 #V1 #V2 #T * #f #Hf #HL #HV elim (frees_inv_bind … Hf) -Hf
153 /6 width=6 by sle_lexs_trans, lexs_inv_tl, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
154 qed-.
155
156 lemma lfxs_inv_flat: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 →
157                      L1 ⦻*[R, V] L2 ∧ L1 ⦻*[R, T] L2.
158 #R #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_flat … Hf) -Hf
159 /5 width=6 by sle_lexs_trans, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
160 qed-.
161
162 (* Advanced inversion lemmas ************************************************)
163
164 lemma lfxs_inv_sort_pair_sn: ∀R,I,Y2,L1,V1,s. L1.ⓑ{I}V1 ⦻*[R, ⋆s] Y2 →
165                              ∃∃L2,V2. L1 ⦻*[R, ⋆s] L2 & Y2 = L2.ⓑ{I}V2.
166 #R #I #Y2 #L1 #V1 #s #H elim (lfxs_inv_sort … H) -H *
167 [ #H destruct
168 | #J #Y1 #L2 #X1 #V2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
169 ]
170 qed-.
171
172 lemma lfxs_inv_sort_pair_dx: ∀R,I,Y1,L2,V2,s. Y1 ⦻*[R, ⋆s] L2.ⓑ{I}V2 →
173                              ∃∃L1,V1. L1 ⦻*[R, ⋆s] L2 & Y1 = L1.ⓑ{I}V1.
174 #R #I #Y1 #L2 #V2 #s #H elim (lfxs_inv_sort … H) -H *
175 [ #_ #H destruct
176 | #J #L1 #Y2 #V1 #X2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
177 ]
178 qed-.
179
180 lemma lfxs_inv_zero_pair_sn: ∀R,I,Y2,L1,V1. L1.ⓑ{I}V1 ⦻*[R, #0] Y2 →
181                              ∃∃L2,V2. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
182                                       Y2 = L2.ⓑ{I}V2.
183 #R #I #Y2 #L1 #V1 #H elim (lfxs_inv_zero … H) -H *
184 [ #H destruct
185 | #J #Y1 #L2 #X1 #V2 #HV1 #HV12 #H1 #H2 destruct
186   /2 width=5 by ex3_2_intro/
187 ]
188 qed-.
189
190 lemma lfxs_inv_zero_pair_dx: ∀R,I,Y1,L2,V2. Y1 ⦻*[R, #0] L2.ⓑ{I}V2 →
191                              ∃∃L1,V1. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
192                                       Y1 = L1.ⓑ{I}V1.
193 #R #I #Y1 #L2 #V2 #H elim (lfxs_inv_zero … H) -H *
194 [ #_ #H destruct
195 | #J #L1 #Y2 #V1 #X2 #HV1 #HV12 #H1 #H2 destruct
196   /2 width=5 by ex3_2_intro/
197 ]
198 qed-.
199
200 lemma lfxs_inv_lref_pair_sn: ∀R,I,Y2,L1,V1,i. L1.ⓑ{I}V1 ⦻*[R, #⫯i] Y2 →
201                              ∃∃L2,V2. L1 ⦻*[R, #i] L2 & Y2 = L2.ⓑ{I}V2.
202 #R #I #Y2 #L1 #V1 #i #H elim (lfxs_inv_lref … H) -H *
203 [ #H destruct
204 | #J #Y1 #L2 #X1 #V2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
205 ]
206 qed-.
207
208 lemma lfxs_inv_lref_pair_dx: ∀R,I,Y1,L2,V2,i. Y1 ⦻*[R, #⫯i] L2.ⓑ{I}V2 →
209                              ∃∃L1,V1. L1 ⦻*[R, #i] L2 & Y1 = L1.ⓑ{I}V1.
210 #R #I #Y1 #L2 #V2 #i #H elim (lfxs_inv_lref … H) -H *
211 [ #_ #H destruct
212 | #J #L1 #Y2 #V1 #X2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
213 ]
214 qed-.
215
216 lemma lfxs_inv_gref_pair_sn: ∀R,I,Y2,L1,V1,l. L1.ⓑ{I}V1 ⦻*[R, §l] Y2 →
217                              ∃∃L2,V2. L1 ⦻*[R, §l] L2 & Y2 = L2.ⓑ{I}V2.
218 #R #I #Y2 #L1 #V1 #l #H elim (lfxs_inv_gref … H) -H *
219 [ #H destruct
220 | #J #Y1 #L2 #X1 #V2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
221 ]
222 qed-.
223
224 lemma lfxs_inv_gref_pair_dx: ∀R,I,Y1,L2,V2,l. Y1 ⦻*[R, §l] L2.ⓑ{I}V2 →
225                              ∃∃L1,V1. L1 ⦻*[R, §l] L2 & Y1 = L1.ⓑ{I}V1.
226 #R #I #Y1 #L2 #V2 #l #H elim (lfxs_inv_gref … H) -H *
227 [ #_ #H destruct
228 | #J #L1 #Y2 #V1 #X2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
229 ]
230 qed-.
231
232 (* Basic forward lemmas *****************************************************)
233
234 lemma lfxs_fwd_bind_sn: ∀R,p,I,L1,L2,V,T. L1 ⦻*[R, ⓑ{p,I}V.T] L2 → L1 ⦻*[R, V] L2.
235 #R #p #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_bind … Hf) -Hf
236 /4 width=6 by sle_lexs_trans, sor_inv_sle_sn, ex2_intro/
237 qed-.
238
239 lemma lfxs_fwd_bind_dx: ∀R,p,I,L1,L2,V1,V2,T. L1 ⦻*[R, ⓑ{p,I}V1.T] L2 →
240                         R L1 V1 V2 → L1.ⓑ{I}V1 ⦻*[R, T] L2.ⓑ{I}V2.
241 #R #p #I #L1 #L2 #V1 #V2 #T #H #HV elim (lfxs_inv_bind … H HV) -H -HV //
242 qed-.
243
244 lemma lfxs_fwd_flat_sn: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 → L1 ⦻*[R, V] L2.
245 #R #I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H //
246 qed-.
247
248 lemma lfxs_fwd_flat_dx: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 → L1 ⦻*[R, T] L2.
249 #R #I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H //
250 qed-.
251
252 lemma lfxs_fwd_pair_sn: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ②{I}V.T] L2 → L1 ⦻*[R, V] L2.
253 #R * /2 width=4 by lfxs_fwd_flat_sn, lfxs_fwd_bind_sn/
254 qed-.
255
256 (* Basic_2A1: removed theorems 24:
257               llpx_sn_sort llpx_sn_skip llpx_sn_lref llpx_sn_free llpx_sn_gref
258               llpx_sn_bind llpx_sn_flat
259               llpx_sn_inv_bind llpx_sn_inv_flat
260               llpx_sn_fwd_lref llpx_sn_fwd_pair_sn llpx_sn_fwd_length
261               llpx_sn_fwd_bind_sn llpx_sn_fwd_bind_dx llpx_sn_fwd_flat_sn llpx_sn_fwd_flat_dx
262               llpx_sn_refl llpx_sn_Y llpx_sn_bind_O llpx_sn_ge_up llpx_sn_ge llpx_sn_co
263               llpx_sn_fwd_drop_sn llpx_sn_fwd_drop_dx              
264 *)