]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/static/lfxs.ma
advances non lfsx ...
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / static / lfxs.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/relocation/rtmap_id.ma".
16 include "basic_2/notation/relations/relationstar_4.ma".
17 include "basic_2/relocation/lexs.ma".
18 include "basic_2/static/frees.ma".
19
20 (* GENERIC EXTENSION ON REFERRED ENTRIES OF A CONTEXT-SENSITIVE REALTION ****)
21
22 definition lfxs (R) (T): relation lenv ≝
23                 λL1,L2. ∃∃f. L1 ⊢ 𝐅*⦃T⦄ ≡ f & L1 ⦻*[R, cfull, f] L2.
24
25 interpretation "generic extension on referred entries (local environment)"
26    'RelationStar R T L1 L2 = (lfxs R T L1 L2).
27
28 definition R_frees_confluent: predicate (relation3 lenv term term) ≝
29                               λRN.
30                               ∀f1,L,T1. L ⊢ 𝐅*⦃T1⦄ ≡ f1 → ∀T2. RN L T1 T2 →
31                               ∃∃f2. L ⊢ 𝐅*⦃T2⦄ ≡ f2 & f2 ⊆ f1.
32
33 definition lexs_frees_confluent: relation (relation3 lenv term term) ≝
34                                  λRN,RP.
35                                  ∀f1,L1,T. L1 ⊢ 𝐅*⦃T⦄ ≡ f1 →
36                                  ∀L2. L1 ⦻*[RN, RP, f1] L2 →
37                                  ∃∃f2. L2 ⊢ 𝐅*⦃T⦄ ≡ f2 & f2 ⊆ f1.
38
39 definition R_confluent2_lfxs: relation4 (relation3 lenv term term)
40                                         (relation3 lenv term term) … ≝
41                               λR1,R2,RP1,RP2.
42                               ∀L0,T0,T1. R1 L0 T0 T1 → ∀T2. R2 L0 T0 T2 →
43                               ∀L1. L0 ⦻*[RP1, T0] L1 → ∀L2. L0 ⦻*[RP2, T0] L2 →
44                               ∃∃T. R2 L1 T1 T & R1 L2 T2 T.
45
46 (* Basic properties *********************************************************)
47
48 lemma lfxs_atom: ∀R,I. ⋆ ⦻*[R, ⓪{I}] ⋆.
49 /3 width=3 by lexs_atom, frees_atom, ex2_intro/
50 qed.
51
52 lemma lfxs_sort: ∀R,I,L1,L2,V1,V2,s.
53                  L1 ⦻*[R, ⋆s] L2 → L1.ⓑ{I}V1 ⦻*[R, ⋆s] L2.ⓑ{I}V2.
54 #R #I #L1 #L2 #V1 #V2 #s * /3 width=3 by lexs_push, frees_sort, ex2_intro/
55 qed.
56
57 lemma lfxs_zero: ∀R,I,L1,L2,V1,V2. L1 ⦻*[R, V1] L2 →
58                  R L1 V1 V2 → L1.ⓑ{I}V1 ⦻*[R, #0] L2.ⓑ{I}V2.
59 #R #I #L1 #L2 #V1 #V2 * /3 width=3 by lexs_next, frees_zero, ex2_intro/
60 qed.
61
62 lemma lfxs_lref: ∀R,I,L1,L2,V1,V2,i.
63                  L1 ⦻*[R, #i] L2 → L1.ⓑ{I}V1 ⦻*[R, #⫯i] L2.ⓑ{I}V2.
64 #R #I #L1 #L2 #V1 #V2 #i * /3 width=3 by lexs_push, frees_lref, ex2_intro/
65 qed.
66
67 lemma lfxs_gref: ∀R,I,L1,L2,V1,V2,l.
68                  L1 ⦻*[R, §l] L2 → L1.ⓑ{I}V1 ⦻*[R, §l] L2.ⓑ{I}V2.
69 #R #I #L1 #L2 #V1 #V2 #l * /3 width=3 by lexs_push, frees_gref, ex2_intro/
70 qed.
71
72 lemma lfxs_pair_repl_dx: ∀R,I,L1,L2,T,V,V1.
73                          L1.ⓑ{I}V ⦻*[R, T] L2.ⓑ{I}V1 →
74                          ∀V2. R L1 V V2 →
75                          L1.ⓑ{I}V ⦻*[R, T] L2.ⓑ{I}V2.
76 #R #I #L1 #L2 #T #V #V1 * #f #Hf #HL12 #V2 #HR
77 /3 width=5 by lexs_pair_repl, ex2_intro/
78 qed-.
79
80 lemma lfxs_sym: ∀R. lexs_frees_confluent R cfull →
81                 (∀L1,L2,T1,T2. R L1 T1 T2 → R L2 T2 T1) →
82                 ∀T. symmetric … (lfxs R T).
83 #R #H1R #H2R #T #L1 #L2 * #f1 #Hf1 #HL12 elim (H1R … Hf1 … HL12) -Hf1
84 /4 width=5 by sle_lexs_trans, lexs_sym, ex2_intro/
85 qed-.
86
87 lemma lfxs_co: ∀R1,R2. (∀L,T1,T2. R1 L T1 T2 → R2 L T1 T2) →
88                ∀L1,L2,T. L1 ⦻*[R1, T] L2 → L1 ⦻*[R2, T] L2.
89 #R1 #R2 #HR #L1 #L2 #T * /4 width=7 by lexs_co, ex2_intro/
90 qed-.
91
92 lemma lfxs_isid: ∀R1,R2,L1,L2,T1,T2.
93                  (∀f. L1 ⊢ 𝐅*⦃T1⦄ ≡ f → 𝐈⦃f⦄) → 
94                  (∀f. 𝐈⦃f⦄ → L1 ⊢ 𝐅*⦃T2⦄ ≡ f) → 
95                  L1 ⦻*[R1, T1] L2 → L1 ⦻*[R2, T2] L2.
96 #R1 #R2 #L1 #L2 #T1 #T2 #H1 #H2 *
97 /4 width=7 by lexs_co_isid, ex2_intro/
98 qed-.
99
100 (* Basic inversion lemmas ***************************************************)
101
102 lemma lfxs_inv_atom_sn: ∀R,Y2,T. ⋆ ⦻*[R, T] Y2 → Y2 = ⋆.
103 #R #Y2 #T * /2 width=4 by lexs_inv_atom1/
104 qed-.
105
106 lemma lfxs_inv_atom_dx: ∀R,Y1,T. Y1 ⦻*[R, T] ⋆ → Y1 = ⋆.
107 #R #I #Y1 * /2 width=4 by lexs_inv_atom2/
108 qed-.
109
110 lemma lfxs_inv_sort: ∀R,Y1,Y2,s. Y1 ⦻*[R, ⋆s] Y2 →
111                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨
112                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, ⋆s] L2 &
113                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
114 #R * [ | #Y1 #I #V1 ] #Y2 #s * #f #H1 #H2
115 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
116 | lapply (frees_inv_sort … H1) -H1 #Hf
117   elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
118   elim (lexs_inv_push1 … H2) -H2 #L2 #V2 #H12 #_ #H destruct
119   /5 width=8 by frees_sort_gen, ex3_5_intro, ex2_intro, or_intror/
120 ]
121 qed-.
122
123 lemma lfxs_inv_zero: ∀R,Y1,Y2. Y1 ⦻*[R, #0] Y2 →
124                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨
125                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
126                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
127 #R #Y1 #Y2 * #f #H1 #H2 elim (frees_inv_zero … H1) -H1 *
128 [ #H #_ lapply (lexs_inv_atom1_aux … H2 H) -H2 /3 width=1 by or_introl, conj/
129 | #I1 #L1 #V1 #g #HV1 #HY1 #Hg elim (lexs_inv_next1_aux … H2 … HY1 Hg) -H2 -Hg
130   /4 width=9 by ex4_5_intro, ex2_intro, or_intror/
131 ]
132 qed-.
133
134 lemma lfxs_inv_lref: ∀R,Y1,Y2,i. Y1 ⦻*[R, #⫯i] Y2 →
135                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨
136                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, #i] L2 &
137                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
138 #R #Y1 #Y2 #i * #f #H1 #H2 elim (frees_inv_lref … H1) -H1 *
139 [ #H #_ lapply (lexs_inv_atom1_aux … H2 H) -H2 /3 width=1 by or_introl, conj/
140 | #I1 #L1 #V1 #g #HV1 #HY1 #Hg elim (lexs_inv_push1_aux … H2 … HY1 Hg) -H2 -Hg
141   /4 width=8 by ex3_5_intro, ex2_intro, or_intror/
142 ]
143 qed-.
144
145 lemma lfxs_inv_gref: ∀R,Y1,Y2,l. Y1 ⦻*[R, §l] Y2 →
146                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
147                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, §l] L2 &
148                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
149 #R * [ | #Y1 #I #V1 ] #Y2 #l * #f #H1 #H2
150 [ lapply (lexs_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
151 | lapply (frees_inv_gref … H1) -H1 #Hf
152   elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
153   elim (lexs_inv_push1 … H2) -H2 #L2 #V2 #H12 #_ #H destruct
154   /5 width=8 by frees_gref_gen, ex3_5_intro, ex2_intro, or_intror/
155 ]
156 qed-.
157
158 lemma lfxs_inv_bind: ∀R,p,I,L1,L2,V1,V2,T. L1 ⦻*[R, ⓑ{p,I}V1.T] L2 → R L1 V1 V2 →
159                      L1 ⦻*[R, V1] L2 ∧ L1.ⓑ{I}V1 ⦻*[R, T] L2.ⓑ{I}V2.
160 #R #p #I #L1 #L2 #V1 #V2 #T * #f #Hf #HL #HV elim (frees_inv_bind … Hf) -Hf
161 /6 width=6 by sle_lexs_trans, lexs_inv_tl, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
162 qed-.
163
164 lemma lfxs_inv_flat: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 →
165                      L1 ⦻*[R, V] L2 ∧ L1 ⦻*[R, T] L2.
166 #R #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_flat … Hf) -Hf
167 /5 width=6 by sle_lexs_trans, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
168 qed-.
169
170 (* Advanced inversion lemmas ************************************************)
171
172 lemma lfxs_inv_sort_pair_sn: ∀R,I,Y2,L1,V1,s. L1.ⓑ{I}V1 ⦻*[R, ⋆s] Y2 →
173                              ∃∃L2,V2. L1 ⦻*[R, ⋆s] L2 & Y2 = L2.ⓑ{I}V2.
174 #R #I #Y2 #L1 #V1 #s #H elim (lfxs_inv_sort … H) -H *
175 [ #H destruct
176 | #J #Y1 #L2 #X1 #V2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
177 ]
178 qed-.
179
180 lemma lfxs_inv_sort_pair_dx: ∀R,I,Y1,L2,V2,s. Y1 ⦻*[R, ⋆s] L2.ⓑ{I}V2 →
181                              ∃∃L1,V1. L1 ⦻*[R, ⋆s] L2 & Y1 = L1.ⓑ{I}V1.
182 #R #I #Y1 #L2 #V2 #s #H elim (lfxs_inv_sort … H) -H *
183 [ #_ #H destruct
184 | #J #L1 #Y2 #V1 #X2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
185 ]
186 qed-.
187
188 lemma lfxs_inv_zero_pair_sn: ∀R,I,Y2,L1,V1. L1.ⓑ{I}V1 ⦻*[R, #0] Y2 →
189                              ∃∃L2,V2. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
190                                       Y2 = L2.ⓑ{I}V2.
191 #R #I #Y2 #L1 #V1 #H elim (lfxs_inv_zero … H) -H *
192 [ #H destruct
193 | #J #Y1 #L2 #X1 #V2 #HV1 #HV12 #H1 #H2 destruct
194   /2 width=5 by ex3_2_intro/
195 ]
196 qed-.
197
198 lemma lfxs_inv_zero_pair_dx: ∀R,I,Y1,L2,V2. Y1 ⦻*[R, #0] L2.ⓑ{I}V2 →
199                              ∃∃L1,V1. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
200                                       Y1 = L1.ⓑ{I}V1.
201 #R #I #Y1 #L2 #V2 #H elim (lfxs_inv_zero … H) -H *
202 [ #_ #H destruct
203 | #J #L1 #Y2 #V1 #X2 #HV1 #HV12 #H1 #H2 destruct
204   /2 width=5 by ex3_2_intro/
205 ]
206 qed-.
207
208 lemma lfxs_inv_lref_pair_sn: ∀R,I,Y2,L1,V1,i. L1.ⓑ{I}V1 ⦻*[R, #⫯i] Y2 →
209                              ∃∃L2,V2. L1 ⦻*[R, #i] L2 & Y2 = L2.ⓑ{I}V2.
210 #R #I #Y2 #L1 #V1 #i #H elim (lfxs_inv_lref … H) -H *
211 [ #H destruct
212 | #J #Y1 #L2 #X1 #V2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
213 ]
214 qed-.
215
216 lemma lfxs_inv_lref_pair_dx: ∀R,I,Y1,L2,V2,i. Y1 ⦻*[R, #⫯i] L2.ⓑ{I}V2 →
217                              ∃∃L1,V1. L1 ⦻*[R, #i] L2 & Y1 = L1.ⓑ{I}V1.
218 #R #I #Y1 #L2 #V2 #i #H elim (lfxs_inv_lref … H) -H *
219 [ #_ #H destruct
220 | #J #L1 #Y2 #V1 #X2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
221 ]
222 qed-.
223
224 lemma lfxs_inv_gref_pair_sn: ∀R,I,Y2,L1,V1,l. L1.ⓑ{I}V1 ⦻*[R, §l] Y2 →
225                              ∃∃L2,V2. L1 ⦻*[R, §l] L2 & Y2 = L2.ⓑ{I}V2.
226 #R #I #Y2 #L1 #V1 #l #H elim (lfxs_inv_gref … H) -H *
227 [ #H destruct
228 | #J #Y1 #L2 #X1 #V2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
229 ]
230 qed-.
231
232 lemma lfxs_inv_gref_pair_dx: ∀R,I,Y1,L2,V2,l. Y1 ⦻*[R, §l] L2.ⓑ{I}V2 →
233                              ∃∃L1,V1. L1 ⦻*[R, §l] L2 & Y1 = L1.ⓑ{I}V1.
234 #R #I #Y1 #L2 #V2 #l #H elim (lfxs_inv_gref … H) -H *
235 [ #_ #H destruct
236 | #J #L1 #Y2 #V1 #X2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
237 ]
238 qed-.
239
240 (* Basic forward lemmas *****************************************************)
241
242 lemma lfxs_fwd_bind_sn: ∀R,p,I,L1,L2,V,T. L1 ⦻*[R, ⓑ{p,I}V.T] L2 → L1 ⦻*[R, V] L2.
243 #R #p #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_bind … Hf) -Hf
244 /4 width=6 by sle_lexs_trans, sor_inv_sle_sn, ex2_intro/
245 qed-.
246
247 lemma lfxs_fwd_bind_dx: ∀R,p,I,L1,L2,V1,V2,T. L1 ⦻*[R, ⓑ{p,I}V1.T] L2 →
248                         R L1 V1 V2 → L1.ⓑ{I}V1 ⦻*[R, T] L2.ⓑ{I}V2.
249 #R #p #I #L1 #L2 #V1 #V2 #T #H #HV elim (lfxs_inv_bind … H HV) -H -HV //
250 qed-.
251
252 lemma lfxs_fwd_flat_sn: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 → L1 ⦻*[R, V] L2.
253 #R #I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H //
254 qed-.
255
256 lemma lfxs_fwd_flat_dx: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 → L1 ⦻*[R, T] L2.
257 #R #I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H //
258 qed-.
259
260 lemma lfxs_fwd_pair_sn: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ②{I}V.T] L2 → L1 ⦻*[R, V] L2.
261 #R * /2 width=4 by lfxs_fwd_flat_sn, lfxs_fwd_bind_sn/
262 qed-.
263
264 lemma lfxs_fwd_dx: ∀R,I,L1,K2,T,V2. L1 ⦻*[R, T] K2.ⓑ{I}V2 →
265                    ∃∃K1,V1. L1 = K1.ⓑ{I}V1.
266 #R #I #L1 #K2 #T #V2 * #f elim (pn_split f) * #g #Hg #_ #Hf destruct
267 [ elim (lexs_inv_push2 … Hf) | elim (lexs_inv_next2 … Hf) ] -Hf #K1 #V1 #_ #_ #H destruct
268 /2 width=3 by ex1_2_intro/
269 qed-.
270
271 (* Basic_2A1: removed theorems 24:
272               llpx_sn_sort llpx_sn_skip llpx_sn_lref llpx_sn_free llpx_sn_gref
273               llpx_sn_bind llpx_sn_flat
274               llpx_sn_inv_bind llpx_sn_inv_flat
275               llpx_sn_fwd_lref llpx_sn_fwd_pair_sn llpx_sn_fwd_length
276               llpx_sn_fwd_bind_sn llpx_sn_fwd_bind_dx llpx_sn_fwd_flat_sn llpx_sn_fwd_flat_dx
277               llpx_sn_refl llpx_sn_Y llpx_sn_bind_O llpx_sn_ge_up llpx_sn_ge llpx_sn_co
278               llpx_sn_fwd_drop_sn llpx_sn_fwd_drop_dx              
279 *)