]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/static/lfxs.ma
some renaming and reordering of variables
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / static / lfxs.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/relocation/rtmap_id.ma".
16 include "basic_2/notation/relations/relationstar_4.ma".
17 include "basic_2/grammar/ceq.ma".
18 include "basic_2/relocation/lexs.ma".
19 include "basic_2/static/frees.ma".
20
21 (* GENERIC EXTENSION ON REFERRED ENTRIES OF A CONTEXT-SENSITIVE REALTION ****)
22
23 definition lfxs (R) (T): relation lenv ≝
24                 λL1,L2. ∃∃f. L1 ⊢ 𝐅*⦃T⦄ ≡ f & L1 ⦻*[R, cfull, f] L2.
25
26 interpretation "generic extension on referred entries (local environment)"
27    'RelationStar R T L1 L2 = (lfxs R T L1 L2).
28
29 (* Basic properties ***********************************************************)
30
31 lemma lfxs_atom: ∀R,I. ⋆ ⦻*[R, ⓪{I}] ⋆.
32 /3 width=3 by lexs_atom, frees_atom, ex2_intro/
33 qed.
34
35 lemma lfxs_sort: ∀R,I,L1,L2,V1,V2,s.
36                  L1 ⦻*[R, ⋆s] L2 → L1.ⓑ{I}V1 ⦻*[R, ⋆s] L2.ⓑ{I}V2.
37 #R #I #L1 #L2 #V1 #V2 #s * /3 width=3 by lexs_push, frees_sort, ex2_intro/
38 qed.
39
40 lemma lfxs_zero: ∀R,I,L1,L2,V1,V2. L1 ⦻*[R, V1] L2 →
41                  R L1 V1 V2 → L1.ⓑ{I}V1 ⦻*[R, #0] L2.ⓑ{I}V2.
42 #R #I #L1 #L2 #V1 #V2 * /3 width=3 by lexs_next, frees_zero, ex2_intro/
43 qed.
44
45 lemma lfxs_lref: ∀R,I,L1,L2,V1,V2,i.
46                  L1 ⦻*[R, #i] L2 → L1.ⓑ{I}V1 ⦻*[R, #⫯i] L2.ⓑ{I}V2.
47 #R #I #L1 #L2 #V1 #V2 #i * /3 width=3 by lexs_push, frees_lref, ex2_intro/
48 qed.
49
50 lemma lfxs_gref: ∀R,I,L1,L2,V1,V2,l.
51                  L1 ⦻*[R, §l] L2 → L1.ⓑ{I}V1 ⦻*[R, §l] L2.ⓑ{I}V2.
52 #R #I #L1 #L2 #V1 #V2 #l * /3 width=3 by lexs_push, frees_gref, ex2_intro/
53 qed.
54
55 lemma lfxs_co: ∀R1,R2. (∀L,T1,T2. R1 L T1 T2 → R2 L T1 T2) →
56                ∀L1,L2,T. L1 ⦻*[R1, T] L2 → L1 ⦻*[R2, T] L2.
57 #R1 #R2 #HR #L1 #L2 #T * /4 width=7 by lexs_co, ex2_intro/
58 qed-.
59
60 (* Basic inversion lemmas ***************************************************)
61
62 lemma lfxs_inv_atom_sn: ∀R,I,Y2. ⋆ ⦻*[R, ⓪{I}] Y2 → Y2 = ⋆.
63 #R #I #Y2 * /2 width=4 by lexs_inv_atom1/
64 qed-.
65
66 lemma lfxs_inv_atom_dx: ∀R,I,Y1. Y1 ⦻*[R, ⓪{I}] ⋆ → Y1 = ⋆.
67 #R #I #Y1 * /2 width=4 by lexs_inv_atom2/
68 qed-.
69
70 lemma lfxs_inv_zero: ∀R,Y1,Y2. Y1 ⦻*[R, #0] Y2 →
71                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
72                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
73                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
74 #R #Y1 #Y2 * #f #H1 #H2 elim (frees_inv_zero … H1) -H1 *
75 [ #H #_ lapply (lexs_inv_atom1_aux … H2 H) -H2 /3 width=1 by or_introl, conj/
76 | #I1 #L1 #V1 #g #HV1 #HY1 #Hg elim (lexs_inv_next1_aux … H2 … HY1 Hg) -H2 -Hg
77   /4 width=9 by ex4_5_intro, ex2_intro, or_intror/
78 ]
79 qed-.
80
81 lemma lfxs_inv_lref: ∀R,Y1,Y2,i. Y1 ⦻*[R, #⫯i] Y2 →
82                      (Y1 = ⋆ ∧ Y2 = ⋆) ∨ 
83                      ∃∃I,L1,L2,V1,V2. L1 ⦻*[R, #i] L2 &
84                                       Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2.
85 #R #Y1 #Y2 #i * #f #H1 #H2 elim (frees_inv_lref … H1) -H1 *
86 [ #H #_ lapply (lexs_inv_atom1_aux … H2 H) -H2 /3 width=1 by or_introl, conj/
87 | #I1 #L1 #V1 #g #HV1 #HY1 #Hg elim (lexs_inv_push1_aux … H2 … HY1 Hg) -H2 -Hg
88   /4 width=8 by ex3_5_intro, ex2_intro, or_intror/
89 ]
90 qed-.
91
92 lemma lfxs_inv_bind: ∀R,p,I,L1,L2,V1,V2,T. L1 ⦻*[R, ⓑ{p,I}V1.T] L2 → R L1 V1 V2 →
93                      L1 ⦻*[R, V1] L2 ∧ L1.ⓑ{I}V1 ⦻*[R, T] L2.ⓑ{I}V2.
94 #R #p #I #L1 #L2 #V1 #V2 #T * #f #Hf #HL #HV elim (frees_inv_bind … Hf) -Hf
95 /6 width=6 by sle_lexs_trans, lexs_inv_tl, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
96 qed-.
97
98 lemma lfxs_inv_flat: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 →
99                      L1 ⦻*[R, V] L2 ∧ L1 ⦻*[R, T] L2.
100 #R #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_flat … Hf) -Hf
101 /5 width=6 by sle_lexs_trans, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
102 qed-.
103
104 (* Advanced inversion lemmas ************************************************)
105
106 lemma lfxs_inv_zero_pair_sn: ∀R,I,Y2,L1,V1. L1.ⓑ{I}V1 ⦻*[R, #0] Y2 →
107                              ∃∃L2,V2. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
108                                       Y2 = L2.ⓑ{I}V2.
109 #R #I #Y2 #L1 #V1 #H elim (lfxs_inv_zero … H) -H *
110 [ #H destruct
111 | #J #Y1 #L2 #X1 #V2 #HV1 #HV12 #H1 #H2 destruct
112   /2 width=5 by ex3_2_intro/
113 ]
114 qed-.
115
116 lemma lfxs_inv_zero_pair_dx: ∀R,I,Y1,L2,V2. Y1 ⦻*[R, #0] L2.ⓑ{I}V2 →
117                              ∃∃L1,V1. L1 ⦻*[R, V1] L2 & R L1 V1 V2 &
118                                       Y1 = L1.ⓑ{I}V1.
119 #R #I #Y1 #L2 #V2 #H elim (lfxs_inv_zero … H) -H *
120 [ #_ #H destruct
121 | #J #L1 #Y2 #V1 #X2 #HV1 #HV12 #H1 #H2 destruct
122   /2 width=5 by ex3_2_intro/
123 ]
124 qed-.
125
126 lemma lfxs_inv_lref_pair_sn: ∀R,I,Y2,L1,V1,i. L1.ⓑ{I}V1 ⦻*[R, #⫯i] Y2 →
127                              ∃∃L2,V2. L1 ⦻*[R, #i] L2 & Y2 = L2.ⓑ{I}V2.
128 #R #I #Y2 #L1 #V1 #i #H elim (lfxs_inv_lref … H) -H *
129 [ #H destruct
130 | #J #Y1 #L2 #X1 #V2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
131 ]
132 qed-.
133
134 lemma lfxs_inv_lref_pair_dx: ∀R,I,Y1,L2,V2,i. Y1 ⦻*[R, #⫯i] L2.ⓑ{I}V2 →
135                              ∃∃L1,V1. L1 ⦻*[R, #i] L2 & Y1 = L1.ⓑ{I}V1.
136 #R #I #Y1 #L2 #V2 #i #H elim (lfxs_inv_lref … H) -H *
137 [ #_ #H destruct
138 | #J #L1 #Y2 #V1 #X2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
139 ]
140 qed-.
141
142 (* Basic forward lemmas *****************************************************)
143
144 lemma lfxs_fwd_bind_sn: ∀R,p,I,L1,L2,V,T. L1 ⦻*[R, ⓑ{p,I}V.T] L2 → L1 ⦻*[R, V] L2.
145 #R #p #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_bind … Hf) -Hf
146 /4 width=6 by sle_lexs_trans, sor_inv_sle_sn, ex2_intro/
147 qed-.
148
149 lemma lfxs_fwd_bind_dx: ∀R,p,I,L1,L2,V1,V2,T. L1 ⦻*[R, ⓑ{p,I}V1.T] L2 →
150                         R L1 V1 V2 → L1.ⓑ{I}V1 ⦻*[R, T] L2.ⓑ{I}V2.
151 #R #p #I #L1 #L2 #V1 #V2 #T #H #HV elim (lfxs_inv_bind … H HV) -H -HV //
152 qed-.
153
154 lemma lfxs_fwd_flat_sn: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 → L1 ⦻*[R, V] L2.
155 #R #I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H //
156 qed-.
157
158 lemma lfxs_fwd_flat_dx: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ⓕ{I}V.T] L2 → L1 ⦻*[R, T] L2.
159 #R #I #L1 #L2 #V #T #H elim (lfxs_inv_flat … H) -H //
160 qed-.
161
162 lemma lfxs_fwd_pair_sn: ∀R,I,L1,L2,V,T. L1 ⦻*[R, ②{I}V.T] L2 → L1 ⦻*[R, V] L2.
163 #R * /2 width=4 by lfxs_fwd_flat_sn, lfxs_fwd_bind_sn/
164 qed-.
165
166 (* Basic_2A1: removed theorems 24:
167               llpx_sn_sort llpx_sn_skip llpx_sn_lref llpx_sn_free llpx_sn_gref
168               llpx_sn_bind llpx_sn_flat
169               llpx_sn_inv_bind llpx_sn_inv_flat
170               llpx_sn_fwd_lref llpx_sn_fwd_pair_sn llpx_sn_fwd_length
171               llpx_sn_fwd_bind_sn llpx_sn_fwd_bind_dx llpx_sn_fwd_flat_sn llpx_sn_fwd_flat_dx
172               llpx_sn_refl llpx_sn_Y llpx_sn_bind_O llpx_sn_ge_up llpx_sn_ge llpx_sn_co
173               llpx_sn_fwd_drop_sn llpx_sn_fwd_drop_dx              
174 *)