]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/static/rex.ma
renaming in basic_2
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / static / rex.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/relocation/rtmap_id.ma".
16 include "basic_2/notation/relations/relation_4.ma".
17 include "basic_2/syntax/cext2.ma".
18 include "basic_2/relocation/sex.ma".
19 include "basic_2/static/frees.ma".
20
21 (* GENERIC EXTENSION ON REFERRED ENTRIES OF A CONTEXT-SENSITIVE REALTION ****)
22
23 definition rex (R) (T): relation lenv ≝
24                λL1,L2. ∃∃f. L1 ⊢ 𝐅*⦃T⦄ ≘ f & L1 ⪤[cext2 R, cfull, f] L2.
25
26 interpretation "generic extension on referred entries (local environment)"
27    'Relation R T L1 L2 = (rex R T L1 L2).
28
29 definition R_confluent2_rex: relation4 (relation3 lenv term term)
30                                        (relation3 lenv term term) … ≝
31                              λR1,R2,RP1,RP2.
32                              ∀L0,T0,T1. R1 L0 T0 T1 → ∀T2. R2 L0 T0 T2 →
33                              ∀L1. L0 ⪤[RP1, T0] L1 → ∀L2. L0 ⪤[RP2, T0] L2 →
34                              ∃∃T. R2 L1 T1 T & R1 L2 T2 T.
35
36 definition rex_confluent: relation … ≝
37                           λR1,R2. 
38                           ∀K1,K,V1. K1 ⪤[R1, V1] K → ∀V. R1 K1 V1 V →
39                           ∀K2. K ⪤[R2, V] K2 → K ⪤[R2, V1] K2.
40
41 definition rex_transitive: relation3 ? (relation3 ?? term) … ≝
42                            λR1,R2,R3.
43                            ∀K1,K,V1. K1 ⪤[R1, V1] K →
44                            ∀V. R1 K1 V1 V → ∀V2. R2 K V V2 → R3 K1 V1 V2.
45
46 (* Basic inversion lemmas ***************************************************)
47
48 lemma rex_inv_atom_sn (R): ∀Y2,T. ⋆ ⪤[R, T] Y2 → Y2 = ⋆.
49 #R #Y2 #T * /2 width=4 by sex_inv_atom1/
50 qed-.
51
52 lemma rex_inv_atom_dx (R): ∀Y1,T. Y1 ⪤[R, T] ⋆ → Y1 = ⋆.
53 #R #I #Y1 * /2 width=4 by sex_inv_atom2/
54 qed-.
55
56 lemma rex_inv_sort (R): ∀Y1,Y2,s. Y1 ⪤[R, ⋆s] Y2 →
57                         ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
58                          | ∃∃I1,I2,L1,L2. L1 ⪤[R, ⋆s] L2 &
59                                           Y1 = L1.ⓘ{I1} & Y2 = L2.ⓘ{I2}.
60 #R * [ | #Y1 #I1 ] #Y2 #s * #f #H1 #H2
61 [ lapply (sex_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
62 | lapply (frees_inv_sort … H1) -H1 #Hf
63   elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
64   elim (sex_inv_push1 … H2) -H2 #I2 #L2 #H12 #_ #H destruct
65   /5 width=7 by frees_sort, ex3_4_intro, ex2_intro, or_intror/
66 ]
67 qed-.
68
69 lemma rex_inv_zero (R): ∀Y1,Y2. Y1 ⪤[R, #0] Y2 →
70                         ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
71                          | ∃∃I,L1,L2,V1,V2. L1 ⪤[R, V1] L2 & R L1 V1 V2 &
72                                             Y1 = L1.ⓑ{I}V1 & Y2 = L2.ⓑ{I}V2
73                          | ∃∃f,I,L1,L2. 𝐈⦃f⦄ & L1 ⪤[cext2 R, cfull, f] L2 &
74                                         Y1 = L1.ⓤ{I} & Y2 = L2.ⓤ{I}.
75 #R * [ | #Y1 * #I1 [ | #X ] ] #Y2 * #f #H1 #H2
76 [ lapply (sex_inv_atom1 … H2) -H2 /3 width=1 by or3_intro0, conj/
77 | elim (frees_inv_unit … H1) -H1 #g #HX #H destruct
78   elim (sex_inv_next1 … H2) -H2 #I2 #L2 #HL12 #H #H2 destruct
79   >(ext2_inv_unit_sn … H) -H /3 width=8 by or3_intro2, ex4_4_intro/
80 | elim (frees_inv_pair … H1) -H1 #g #Hg #H destruct
81   elim (sex_inv_next1 … H2) -H2 #Z2 #L2 #HL12 #H
82   elim (ext2_inv_pair_sn … H) -H
83   /4 width=9 by or3_intro1, ex4_5_intro, ex2_intro/
84 ]
85 qed-.
86
87 lemma rex_inv_lref (R): ∀Y1,Y2,i. Y1 ⪤[R, #↑i] Y2 →
88                         ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
89                          | ∃∃I1,I2,L1,L2. L1 ⪤[R, #i] L2 &
90                                           Y1 = L1.ⓘ{I1} & Y2 = L2.ⓘ{I2}.
91 #R * [ | #Y1 #I1 ] #Y2 #i * #f #H1 #H2
92 [ lapply (sex_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
93 | elim (frees_inv_lref … H1) -H1 #g #Hg #H destruct
94   elim (sex_inv_push1 … H2) -H2
95   /4 width=7 by ex3_4_intro, ex2_intro, or_intror/
96 ]
97 qed-.
98
99 lemma rex_inv_gref (R): ∀Y1,Y2,l. Y1 ⪤[R, §l] Y2 →
100                         ∨∨ Y1 = ⋆ ∧ Y2 = ⋆
101                          | ∃∃I1,I2,L1,L2. L1 ⪤[R, §l] L2 &
102                                           Y1 = L1.ⓘ{I1} & Y2 = L2.ⓘ{I2}.
103 #R * [ | #Y1 #I1 ] #Y2 #l * #f #H1 #H2
104 [ lapply (sex_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
105 | lapply (frees_inv_gref … H1) -H1 #Hf
106   elim (isid_inv_gen … Hf) -Hf #g #Hg #H destruct
107   elim (sex_inv_push1 … H2) -H2 #I2 #L2 #H12 #_ #H destruct
108   /5 width=7 by frees_gref, ex3_4_intro, ex2_intro, or_intror/
109 ]
110 qed-.
111
112 (* Basic_2A1: uses: llpx_sn_inv_bind llpx_sn_inv_bind_O *)
113 lemma rex_inv_bind (R): ∀p,I,L1,L2,V1,V2,T. L1 ⪤[R, ⓑ{p,I}V1.T] L2 → R L1 V1 V2 →
114                         ∧∧ L1 ⪤[R, V1] L2 & L1.ⓑ{I}V1 ⪤[R, T] L2.ⓑ{I}V2.
115 #R #p #I #L1 #L2 #V1 #V2 #T * #f #Hf #HL #HV elim (frees_inv_bind … Hf) -Hf
116 /6 width=6 by sle_sex_trans, sex_inv_tl, ext2_pair, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
117 qed-.
118
119 (* Basic_2A1: uses: llpx_sn_inv_flat *)
120 lemma rex_inv_flat (R): ∀I,L1,L2,V,T. L1 ⪤[R, ⓕ{I}V.T] L2 →
121                         ∧∧ L1 ⪤[R, V] L2 & L1 ⪤[R, T] L2.
122 #R #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_flat … Hf) -Hf
123 /5 width=6 by sle_sex_trans, sor_inv_sle_dx, sor_inv_sle_sn, ex2_intro, conj/
124 qed-.
125
126 (* Advanced inversion lemmas ************************************************)
127
128 lemma rex_inv_sort_bind_sn (R): ∀I1,K1,L2,s. K1.ⓘ{I1} ⪤[R, ⋆s] L2 →
129                                 ∃∃I2,K2. K1 ⪤[R, ⋆s] K2 & L2 = K2.ⓘ{I2}.
130 #R #I1 #K1 #L2 #s #H elim (rex_inv_sort … H) -H *
131 [ #H destruct
132 | #Z1 #I2 #Y1 #K2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
133 ]
134 qed-.
135
136 lemma rex_inv_sort_bind_dx (R): ∀I2,K2,L1,s. L1 ⪤[R, ⋆s] K2.ⓘ{I2} →
137                                 ∃∃I1,K1. K1 ⪤[R, ⋆s] K2 & L1 = K1.ⓘ{I1}.
138 #R #I2 #K2 #L1 #s #H elim (rex_inv_sort … H) -H *
139 [ #_ #H destruct
140 | #I1 #Z2 #K1 #Y2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
141 ]
142 qed-.
143
144 lemma rex_inv_zero_pair_sn (R): ∀I,L2,K1,V1. K1.ⓑ{I}V1 ⪤[R, #0] L2 →
145                                 ∃∃K2,V2. K1 ⪤[R, V1] K2 & R K1 V1 V2 &
146                                          L2 = K2.ⓑ{I}V2.
147 #R #I #L2 #K1 #V1 #H elim (rex_inv_zero … H) -H *
148 [ #H destruct
149 | #Z #Y1 #K2 #X1 #V2 #HK12 #HV12 #H1 #H2 destruct
150   /2 width=5 by ex3_2_intro/
151 | #f #Z #Y1 #Y2 #_ #_ #H destruct
152 ]
153 qed-.
154
155 lemma rex_inv_zero_pair_dx (R): ∀I,L1,K2,V2. L1 ⪤[R, #0] K2.ⓑ{I}V2 →
156                                 ∃∃K1,V1. K1 ⪤[R, V1] K2 & R K1 V1 V2 &
157                                          L1 = K1.ⓑ{I}V1.
158 #R #I #L1 #K2 #V2 #H elim (rex_inv_zero … H) -H *
159 [ #_ #H destruct
160 | #Z #K1 #Y2 #V1 #X2 #HK12 #HV12 #H1 #H2 destruct
161   /2 width=5 by ex3_2_intro/
162 | #f #Z #Y1 #Y2 #_ #_ #_ #H destruct
163 ]
164 qed-.
165
166 lemma rex_inv_zero_unit_sn (R): ∀I,K1,L2. K1.ⓤ{I} ⪤[R, #0] L2 →
167                                 ∃∃f,K2. 𝐈⦃f⦄ & K1 ⪤[cext2 R, cfull, f] K2 &
168                                         L2 = K2.ⓤ{I}.
169 #R #I #K1 #L2 #H elim (rex_inv_zero … H) -H *
170 [ #H destruct
171 | #Z #Y1 #Y2 #X1 #X2 #_ #_ #H destruct
172 | #f #Z #Y1 #K2 #Hf #HK12 #H1 #H2 destruct /2 width=5 by ex3_2_intro/
173 ]
174 qed-.
175
176 lemma rex_inv_zero_unit_dx (R): ∀I,L1,K2. L1 ⪤[R, #0] K2.ⓤ{I} →
177                                 ∃∃f,K1. 𝐈⦃f⦄ & K1 ⪤[cext2 R, cfull, f] K2 &
178                                         L1 = K1.ⓤ{I}.
179 #R #I #L1 #K2 #H elim (rex_inv_zero … H) -H *
180 [ #_ #H destruct
181 | #Z #Y1 #Y2 #X1 #X2 #_ #_ #_ #H destruct
182 | #f #Z #K1 #Y2 #Hf #HK12 #H1 #H2 destruct /2 width=5 by ex3_2_intro/
183 ]
184 qed-.
185
186 lemma rex_inv_lref_bind_sn (R): ∀I1,K1,L2,i. K1.ⓘ{I1} ⪤[R, #↑i] L2 →
187                                 ∃∃I2,K2. K1 ⪤[R, #i] K2 & L2 = K2.ⓘ{I2}.
188 #R #I1 #K1 #L2 #i #H elim (rex_inv_lref … H) -H *
189 [ #H destruct
190 | #Z1 #I2 #Y1 #K2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
191 ]
192 qed-.
193
194 lemma rex_inv_lref_bind_dx (R): ∀I2,K2,L1,i. L1 ⪤[R, #↑i] K2.ⓘ{I2} →
195                                 ∃∃I1,K1. K1 ⪤[R, #i] K2 & L1 = K1.ⓘ{I1}.
196 #R #I2 #K2 #L1 #i #H elim (rex_inv_lref … H) -H *
197 [ #_ #H destruct
198 | #I1 #Z2 #K1 #Y2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
199 ]
200 qed-.
201
202 lemma rex_inv_gref_bind_sn (R): ∀I1,K1,L2,l. K1.ⓘ{I1} ⪤[R, §l] L2 →
203                                 ∃∃I2,K2. K1 ⪤[R, §l] K2 & L2 = K2.ⓘ{I2}.
204 #R #I1 #K1 #L2 #l #H elim (rex_inv_gref … H) -H *
205 [ #H destruct
206 | #Z1 #I2 #Y1 #K2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
207 ]
208 qed-.
209
210 lemma rex_inv_gref_bind_dx (R): ∀I2,K2,L1,l. L1 ⪤[R, §l] K2.ⓘ{I2} →
211                                 ∃∃I1,K1. K1 ⪤[R, §l] K2 & L1 = K1.ⓘ{I1}.
212 #R #I2 #K2 #L1 #l #H elim (rex_inv_gref … H) -H *
213 [ #_ #H destruct
214 | #I1 #Z2 #K1 #Y2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
215 ]
216 qed-.
217
218 (* Basic forward lemmas *****************************************************)
219
220 lemma rex_fwd_zero_pair (R): ∀I,K1,K2,V1,V2.
221                              K1.ⓑ{I}V1 ⪤[R, #0] K2.ⓑ{I}V2 → K1 ⪤[R, V1] K2.
222 #R #I #K1 #K2 #V1 #V2 #H
223 elim (rex_inv_zero_pair_sn … H) -H #Y #X #HK12 #_ #H destruct //
224 qed-.
225
226 (* Basic_2A1: uses: llpx_sn_fwd_pair_sn llpx_sn_fwd_bind_sn llpx_sn_fwd_flat_sn *)
227 lemma rex_fwd_pair_sn (R): ∀I,L1,L2,V,T. L1 ⪤[R, ②{I}V.T] L2 → L1 ⪤[R, V] L2.
228 #R * [ #p ] #I #L1 #L2 #V #T * #f #Hf #HL
229 [ elim (frees_inv_bind … Hf) | elim (frees_inv_flat … Hf) ] -Hf
230 /4 width=6 by sle_sex_trans, sor_inv_sle_sn, ex2_intro/
231 qed-.
232
233 (* Basic_2A1: uses: llpx_sn_fwd_bind_dx llpx_sn_fwd_bind_O_dx *)
234 lemma rex_fwd_bind_dx (R): ∀p,I,L1,L2,V1,V2,T. L1 ⪤[R, ⓑ{p,I}V1.T] L2 →
235                            R L1 V1 V2 → L1.ⓑ{I}V1 ⪤[R, T] L2.ⓑ{I}V2.
236 #R #p #I #L1 #L2 #V1 #V2 #T #H #HV elim (rex_inv_bind … H HV) -H -HV //
237 qed-.
238
239 (* Basic_2A1: uses: llpx_sn_fwd_flat_dx *)
240 lemma rex_fwd_flat_dx (R): ∀I,L1,L2,V,T. L1 ⪤[R, ⓕ{I}V.T] L2 → L1 ⪤[R, T] L2.
241 #R #I #L1 #L2 #V #T #H elim (rex_inv_flat … H) -H //
242 qed-.
243
244 lemma rex_fwd_dx (R): ∀I2,L1,K2,T. L1 ⪤[R, T] K2.ⓘ{I2} →
245                       ∃∃I1,K1. L1 = K1.ⓘ{I1}.
246 #R #I2 #L1 #K2 #T * #f elim (pn_split f) * #g #Hg #_ #Hf destruct
247 [ elim (sex_inv_push2 … Hf) | elim (sex_inv_next2 … Hf) ] -Hf #I1 #K1 #_ #_ #H destruct
248 /2 width=3 by ex1_2_intro/
249 qed-.
250
251 (* Basic properties *********************************************************)
252
253 lemma rex_atom (R): ∀I. ⋆ ⪤[R, ⓪{I}] ⋆.
254 #R * /3 width=3 by frees_sort, frees_atom, frees_gref, sex_atom, ex2_intro/
255 qed.
256
257 lemma rex_sort (R): ∀I1,I2,L1,L2,s.
258                     L1 ⪤[R, ⋆s] L2 → L1.ⓘ{I1} ⪤[R, ⋆s] L2.ⓘ{I2}.
259 #R #I1 #I2 #L1 #L2 #s * #f #Hf #H12
260 lapply (frees_inv_sort … Hf) -Hf
261 /4 width=3 by frees_sort, sex_push, isid_push, ex2_intro/
262 qed.
263
264 lemma rex_pair (R): ∀I,L1,L2,V1,V2. L1 ⪤[R, V1] L2 →
265                     R L1 V1 V2 → L1.ⓑ{I}V1 ⪤[R, #0] L2.ⓑ{I}V2.
266 #R #I1 #I2 #L1 #L2 #V1 *
267 /4 width=3 by ext2_pair, frees_pair, sex_next, ex2_intro/
268 qed.
269
270 lemma rex_unit (R): ∀f,I,L1,L2. 𝐈⦃f⦄ → L1 ⪤[cext2 R, cfull, f] L2 →
271                     L1.ⓤ{I} ⪤[R, #0] L2.ⓤ{I}.
272 /4 width=3 by frees_unit, sex_next, ext2_unit, ex2_intro/ qed.
273
274 lemma rex_lref (R): ∀I1,I2,L1,L2,i.
275                     L1 ⪤[R, #i] L2 → L1.ⓘ{I1} ⪤[R, #↑i] L2.ⓘ{I2}.
276 #R #I1 #I2 #L1 #L2 #i * /3 width=3 by sex_push, frees_lref, ex2_intro/
277 qed.
278
279 lemma rex_gref (R): ∀I1,I2,L1,L2,l.
280                     L1 ⪤[R, §l] L2 → L1.ⓘ{I1} ⪤[R, §l] L2.ⓘ{I2}.
281 #R #I1 #I2 #L1 #L2 #l * #f #Hf #H12
282 lapply (frees_inv_gref … Hf) -Hf
283 /4 width=3 by frees_gref, sex_push, isid_push, ex2_intro/
284 qed.
285
286 lemma rex_bind_repl_dx (R): ∀I,I1,L1,L2,T.
287                             L1.ⓘ{I} ⪤[R, T] L2.ⓘ{I1} →
288                             ∀I2. cext2 R L1 I I2 →
289                             L1.ⓘ{I} ⪤[R, T] L2.ⓘ{I2}.
290 #R #I #I1 #L1 #L2 #T * #f #Hf #HL12 #I2 #HR
291 /3 width=5 by sex_pair_repl, ex2_intro/
292 qed-.
293
294 (* Basic_2A1: uses: llpx_sn_co *)
295 lemma rex_co (R1) (R2): (∀L,T1,T2. R1 L T1 T2 → R2 L T1 T2) →
296                         ∀L1,L2,T. L1 ⪤[R1, T] L2 → L1 ⪤[R2, T] L2.
297 #R1 #R2 #HR #L1 #L2 #T * /5 width=7 by sex_co, cext2_co, ex2_intro/
298 qed-.
299
300 lemma rex_isid (R1) (R2): ∀L1,L2,T1,T2.
301                           (∀f. L1 ⊢ 𝐅*⦃T1⦄ ≘ f → 𝐈⦃f⦄) →
302                           (∀f. 𝐈⦃f⦄ → L1 ⊢ 𝐅*⦃T2⦄ ≘ f) →
303                           L1 ⪤[R1, T1] L2 → L1 ⪤[R2, T2] L2.
304 #R1 #R2 #L1 #L2 #T1 #T2 #H1 #H2 *
305 /4 width=7 by sex_co_isid, ex2_intro/
306 qed-.
307
308 lemma rex_unit_sn (R1) (R2): 
309                   ∀I,K1,L2. K1.ⓤ{I} ⪤[R1, #0] L2 → K1.ⓤ{I} ⪤[R2, #0] L2.
310 #R1 #R2 #I #K1 #L2 #H
311 elim (rex_inv_zero_unit_sn … H) -H #f #K2 #Hf #HK12 #H destruct
312 /3 width=7 by rex_unit, sex_co_isid/
313 qed-.
314
315 (* Basic_2A1: removed theorems 9:
316               llpx_sn_skip llpx_sn_lref llpx_sn_free 
317               llpx_sn_fwd_lref
318               llpx_sn_Y llpx_sn_ge_up llpx_sn_ge 
319               llpx_sn_fwd_drop_sn llpx_sn_fwd_drop_dx      
320 *)