]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/substitution/frsup.ma
31d6c9fee9861fe3b4b2f52150d479d7f2cec5d3
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / substitution / frsup.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/grammar/cl_weight.ma".
16 include "basic_2/substitution/lift.ma".
17
18 (* RESTRICTED SUPCLOSURE ****************************************************)
19
20 inductive frsup: bi_relation lenv term ≝
21 | frsup_bind_sn: ∀a,I,L,V,T. frsup L (ⓑ{a,I}V.T) L V
22 | frsup_bind_dx: ∀a,I,L,V,T. frsup L (ⓑ{a,I}V.T) (L.ⓑ{I}V) T
23 | frsup_flat_sn: ∀I,L,V,T.   frsup L (ⓕ{I}V.T) L V
24 | frsup_flat_dx: ∀I,L,V,T.   frsup L (ⓕ{I}V.T) L T
25 .
26
27 interpretation
28    "restricted structural predecessor (closure)"
29    'RestSupTerm L1 T1 L2 T2 = (frsup L1 T1 L2 T2).
30
31 (* Basic inversion lemmas ***************************************************)
32
33 fact frsup_inv_atom1_aux: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ⧁ ⦃L2, T2⦄ →
34                           ∀J. T1 = ⓪{J} → ⊥.
35 #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2
36 [ #a #I #L #V #T #J #H destruct
37 | #a #I #L #V #T #J #H destruct
38 | #I #L #V #T #J #H destruct
39 | #I #L #V #T #J #H destruct
40 ]
41 qed-.
42
43 lemma frsup_inv_atom1: ∀J,L1,L2,T2. ⦃L1, ⓪{J}⦄ ⧁ ⦃L2, T2⦄ → ⊥.
44 /2 width=7 by frsup_inv_atom1_aux/ qed-.
45
46 fact frsup_inv_bind1_aux: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ⧁ ⦃L2, T2⦄ →
47                           ∀b,J,W,U. T1 = ⓑ{b,J}W.U →
48                           (L2 = L1 ∧ T2 = W) ∨
49                           (L2 = L1.ⓑ{J}W ∧ T2 = U).
50 #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2
51 [ #a #I #L #V #T #b #J #W #U #H destruct /3 width=1/
52 | #a #I #L #V #T #b #J #W #U #H destruct /3 width=1/
53 | #I #L #V #T #b #J #W #U #H destruct
54 | #I #L #V #T #b #J #W #U #H destruct
55 ]
56 qed-.
57
58 lemma frsup_inv_bind1: ∀b,J,L1,L2,W,U,T2. ⦃L1, ⓑ{b,J}W.U⦄ ⧁ ⦃L2, T2⦄ →
59                        (L2 = L1 ∧ T2 = W) ∨
60                        (L2 = L1.ⓑ{J}W ∧ T2 = U).
61 /2 width=4 by frsup_inv_bind1_aux/ qed-.
62
63 fact frsup_inv_flat1_aux: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ⧁ ⦃L2, T2⦄ →
64                           ∀J,W,U. T1 = ⓕ{J}W.U →
65                           L2 = L1 ∧ (T2 = W ∨ T2 = U).
66 #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2
67 [ #a #I #L #V #T #J #W #U #H destruct
68 | #a #I #L #V #T #J #W #U #H destruct
69 | #I #L #V #T #J #W #U #H destruct /3 width=1/
70 | #I #L #V #T #J #W #U #H destruct /3 width=1/
71 ]
72 qed-.
73
74 lemma frsup_inv_flat1: ∀J,L1,L2,W,U,T2. ⦃L1, ⓕ{J}W.U⦄ ⧁ ⦃L2, T2⦄ →
75                        L2 = L1 ∧ (T2 = W ∨ T2 = U).
76 /2 width=4 by frsup_inv_flat1_aux/ qed-.
77
78 (* Basic forward lemmas *****************************************************)
79
80 lemma frsup_fwd_fw: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ⧁ ⦃L2, T2⦄ → #{L2, T2} < #{L1, T1}.
81 #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2 /width=1/
82 qed-.
83
84 lemma frsup_fwd_lw: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ⧁ ⦃L2, T2⦄ → #{L1} ≤ #{L2}.
85 #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2 /width=1/
86 qed-.
87
88 lemma frsup_fwd_tw: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ⧁ ⦃L2, T2⦄ → #{T2} < #{T1}.
89 #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2 /width=1/ /2 width=1 by le_minus_to_plus/
90 qed-.
91
92 lemma frsup_fwd_append: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ⧁ ⦃L2, T2⦄ → ∃L. L2 = L1 @@ L.
93 #L1 #L2 #T1 #T2 * -L1 -L2 -T1 -T2
94 [ #a
95 | #a #I #L #V #_ @(ex_intro … (⋆.ⓑ{I}V)) //
96 ]
97 #I #L #V #T @(ex_intro … (⋆)) //
98 qed-.
99
100 (* Advanced forward lemmas **************************************************)
101
102 lemma lift_frsup_trans: ∀T1,U1,d,e. ⇧[d, e] T1 ≡ U1 →
103                         ∀L,K,U2. ⦃L, U1⦄ ⧁ ⦃L @@ K, U2⦄ →
104                         ∃T2. ⇧[d + |K|, e] T2 ≡ U2.
105 #T1 #U1 #d #e * -T1 -U1 -d -e
106 [5: #a #I #V1 #W1 #T1 #U1 #d #e #HVW1 #HTU1 #L #K #X #H
107     elim (frsup_inv_bind1 … H) -H *
108     [ -HTU1 #H1 #H2 destruct
109       >(append_inv_refl_dx … H1) -L -K normalize /2 width=2/
110     | -HVW1 #H1 #H2 destruct
111       >(append_inv_pair_dx … H1) -L -K normalize /2 width=2/
112     ]
113 |6: #I #V1 #W1 #T1 #U1 #d #e #HVW1 #HUT1 #L #K #X #H
114     elim (frsup_inv_flat1 … H) -H #H1 * #H2 destruct
115     >(append_inv_refl_dx … H1) -L -K normalize /2 width=2/
116 ]
117 #i #d #e [2,3: #_ ] #L #K #X #H
118 elim (frsup_inv_atom1 … H)
119 qed-.