]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/substitution/fsupp.ma
lambdadelta
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / substitution / fsupp.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/suptermplus_4.ma".
16 include "basic_2/relocation/fsup.ma".
17
18 (* PLUS-ITERATED SUPCLOSURE *************************************************)
19
20 definition fsupp: bi_relation lenv term ≝ bi_TC … fsup.
21
22 interpretation "plus-iterated structural successor (closure)"
23    'SupTermPlus L1 T1 L2 T2 = (fsupp L1 T1 L2 T2).
24
25 (* Basic properties *********************************************************)
26
27 lemma fsup_fsupp: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ⊃ ⦃L2, T2⦄ → ⦃L1, T1⦄ ⊃+ ⦃L2, T2⦄.
28 /2 width=1/ qed.
29
30 lemma fsupp_strap1: ∀L1,L,L2,T1,T,T2. ⦃L1, T1⦄ ⊃+ ⦃L, T⦄ → ⦃L, T⦄ ⊃ ⦃L2, T2⦄ →
31                     ⦃L1, T1⦄ ⊃+ ⦃L2, T2⦄.
32 /2 width=4/ qed.
33
34 lemma fsupp_strap2: ∀L1,L,L2,T1,T,T2. ⦃L1, T1⦄ ⊃ ⦃L, T⦄ → ⦃L, T⦄ ⊃+ ⦃L2, T2⦄ →
35                     ⦃L1, T1⦄ ⊃+ ⦃L2, T2⦄.
36 /2 width=4/ qed.
37
38 lemma fsupp_lref: ∀I,K,V,i,L. ⇩[0, i] L ≡ K.ⓑ{I}V → ⦃L, #i⦄ ⊃+ ⦃K, V⦄.
39 /3 width=2/ qed.
40
41 lemma fsupp_pair_sn: ∀I,L,V,T. ⦃L, ②{I}V.T⦄ ⊃+ ⦃L, V⦄.
42 /2 width=1/ qed.
43
44 lemma fsupp_bind_dx: ∀a,K,I,V,T. ⦃K, ⓑ{a,I}V.T⦄ ⊃+ ⦃K.ⓑ{I}V, T⦄.
45 /2 width=1/ qed.
46
47 lemma fsupp_flat_dx: ∀I,L,V,T. ⦃L, ⓕ{I}V.T⦄ ⊃+ ⦃L, T⦄.
48 /2 width=1/ qed.
49
50 lemma fsupp_flat_dx_pair_sn: ∀I1,I2,L,V1,V2,T. ⦃L, ⓕ{I1}V1.②{I2}V2.T⦄ ⊃+ ⦃L, V2⦄.
51 /2 width=4/ qed.
52
53 lemma fsupp_bind_dx_flat_dx: ∀a,I1,I2,L,V1,V2,T. ⦃L, ⓑ{a,I1}V1.ⓕ{I2}V2.T⦄ ⊃+ ⦃L.ⓑ{I1}V1, T⦄.
54 /2 width=4/ qed.
55
56 lemma fsupp_flat_dx_bind_dx: ∀a,I1,I2,L,V1,V2,T. ⦃L, ⓕ{I1}V1.ⓑ{a,I2}V2.T⦄ ⊃+ ⦃L.ⓑ{I2}V2, T⦄.
57 /2 width=4/ qed.
58
59 (* Basic eliminators ********************************************************)
60
61 lemma fsupp_ind: ∀L1,T1. ∀R:relation2 lenv term.
62                  (∀L2,T2. ⦃L1, T1⦄ ⊃ ⦃L2, T2⦄ → R L2 T2) →
63                  (∀L,T,L2,T2. ⦃L1, T1⦄ ⊃+ ⦃L, T⦄ → ⦃L, T⦄ ⊃ ⦃L2, T2⦄ → R L T → R L2 T2) →
64                  ∀L2,T2. ⦃L1, T1⦄ ⊃+ ⦃L2, T2⦄ → R L2 T2.
65 #L1 #T1 #R #IH1 #IH2 #L2 #T2 #H
66 @(bi_TC_ind … IH1 IH2 ? ? H)
67 qed-.
68
69 lemma fsupp_ind_dx: ∀L2,T2. ∀R:relation2 lenv term.
70                     (∀L1,T1. ⦃L1, T1⦄ ⊃ ⦃L2, T2⦄ → R L1 T1) →
71                     (∀L1,L,T1,T. ⦃L1, T1⦄ ⊃ ⦃L, T⦄ → ⦃L, T⦄ ⊃+ ⦃L2, T2⦄ → R L T → R L1 T1) →
72                     ∀L1,T1. ⦃L1, T1⦄ ⊃+ ⦃L2, T2⦄ → R L1 T1.
73 #L2 #T2 #R #IH1 #IH2 #L1 #T1 #H
74 @(bi_TC_ind_dx … IH1 IH2 ? ? H)
75 qed-.
76
77 (* Basic forward lemmas *****************************************************)
78
79 lemma fsupp_fwd_fw: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ⊃+ ⦃L2, T2⦄ → ♯{L2, T2} < ♯{L1, T1}.
80 #L1 #L2 #T1 #T2 #H @(fsupp_ind … H) -L2 -T2
81 /3 width=3 by fsup_fwd_fw, transitive_lt/
82 qed-.
83
84 (* Advanced eliminators *****************************************************)
85
86 lemma fsupp_wf_ind: ∀R:relation2 lenv term. (
87                        ∀L1,T1. (∀L2,T2. ⦃L1, T1⦄ ⊃+ ⦃L2, T2⦄ → R L2 T2) →
88                        ∀L2,T2. L1 = L2 → T1 = T2 → R L2 T2
89                     ) → ∀L1,T1. R L1 T1.
90 #R #HR @(f2_ind … fw) #n #IHn #L1 #T1 #H destruct /4 width=5 by fsupp_fwd_fw/
91 qed-.