]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/unfold/cpqs.ma
milestone in basic_2
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / unfold / cpqs.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/substitution/cpss.ma".
16
17 (* CONTEXT-SENSITIVE RESTRICTED PARALLEL COMPUTATION FOR TERMS **************)
18
19 inductive cpqs: lenv → relation term ≝
20 | cpqs_atom : ∀I,L. cpqs L (⓪{I}) (⓪{I})
21 | cpqs_delta: ∀L,K,V,V2,W2,i.
22               ⇩[0, i] L ≡ K. ⓓV → cpqs K V V2 →
23               ⇧[0, i + 1] V2 ≡ W2 → cpqs L (#i) W2
24 | cpqs_bind : ∀a,I,L,V1,V2,T1,T2.
25               cpqs L V1 V2 → cpqs (L. ⓑ{I} V1) T1 T2 →
26               cpqs L (ⓑ{a,I} V1. T1) (ⓑ{a,I} V2. T2)
27 | cpqs_flat : ∀I,L,V1,V2,T1,T2.
28               cpqs L V1 V2 → cpqs L T1 T2 →
29               cpqs L (ⓕ{I} V1. T1) (ⓕ{I} V2. T2)
30 | cpqs_zeta : ∀L,V,T1,T,T2. cpqs (L.ⓓV) T1 T →
31               ⇧[0, 1] T2 ≡ T → cpqs L (+ⓓV. T1) T2
32 | cpqs_tau  : ∀L,V,T1,T2. cpqs L T1 T2 → cpqs L (ⓝV. T1) T2
33 .
34
35 interpretation "context-sensitive restricted parallel computation (term)"
36    'PRestStar L T1 T2 = (cpqs L T1 T2).
37
38 (* Basic properties *********************************************************)
39
40 lemma cpqs_lsubr_trans: lsub_trans … cpqs lsubr.
41 #L1 #T1 #T2 #H elim H -L1 -T1 -T2
42 [ //
43 | #L1 #K1 #V1 #V2 #W2 #i #HLK1 #_ #HVW2 #IHV12 #L2 #HL12
44   elim (lsubr_fwd_ldrop2_abbr … HL12 … HLK1) -HL12 -HLK1 /3 width=6/
45 | /4 width=1/
46 |4,6: /3 width=1/
47 | /4 width=3/
48 ]
49 qed-.
50
51 lemma cpss_cpqs: ∀L,T1,T2. L ⊢ T1 ▶* T2 → L ⊢ T1 ➤* T2.
52 #L #T1 #T2 #H elim H -L -T1 -T2 // /2 width=1/ /2 width=6/
53 qed.
54
55 lemma cpqs_refl: ∀T,L. L ⊢ T ➤* T.
56 /2 width=1/ qed.
57
58 lemma cpqs_delift: ∀L,K,V,T1,d. ⇩[0, d] L ≡ (K. ⓓV) →
59                    ∃∃T2,T. L ⊢ T1 ➤* T2 & ⇧[d, 1] T ≡ T2.
60 #L #K #V #T1 #d #HLK
61 elim (cpss_delift … T1 … HLK) -HLK /3 width=4/
62 qed-.
63
64 lemma cpqs_append: l_appendable_sn … cpqs.
65 #K #T1 #T2 #H elim H -K -T1 -T2 // /2 width=1/ /2 width=3/
66 #K #K0 #V1 #V2 #W2 #i #HK0 #_ #HVW2 #IHV12 #L
67 lapply (ldrop_fwd_length_lt2 … HK0) #H
68 @(cpqs_delta … (L@@K0) V1 … HVW2) //
69 @(ldrop_O1_append_sn_le … HK0) /2 width=2/ (**) (* /3/ does not work *)
70 qed.
71
72 (* Basic inversion lemmas ***************************************************)
73
74 fact cpqs_inv_atom1_aux: ∀L,T1,T2. L ⊢ T1 ➤* T2 → ∀I. T1 = ⓪{I} →
75                          T2 = ⓪{I} ∨
76                          ∃∃K,V,V2,i. ⇩[O, i] L ≡ K. ⓓV &
77                                      K ⊢ V ➤* V2 &
78                                      ⇧[O, i + 1] V2 ≡ T2 &
79                                      I = LRef i.
80 #L #T1 #T2 * -L -T1 -T2
81 [ #I #L #J #H destruct /2 width=1/
82 | #L #K #V #V2 #T2 #i #HLK #HV2 #HVT2 #J #H destruct /3 width=8/
83 | #a #I #L #V1 #V2 #T1 #T2 #_ #_ #J #H destruct
84 | #I #L #V1 #V2 #T1 #T2 #_ #_ #J #H destruct
85 | #L #V #T1 #T #T2 #_ #_ #J #H destruct
86 | #L #V #T1 #T2 #_ #J #H destruct
87 ]
88 qed-.
89
90 lemma cpqs_inv_atom1: ∀I,L,T2. L ⊢ ⓪{I} ➤* T2 →
91                       T2 = ⓪{I} ∨
92                       ∃∃K,V,V2,i. ⇩[O, i] L ≡ K. ⓓV &
93                                   K ⊢ V ➤* V2 &
94                                   ⇧[O, i + 1] V2 ≡ T2 &
95                                   I = LRef i.
96 /2 width=3 by cpqs_inv_atom1_aux/ qed-.
97
98 lemma cpqs_inv_sort1: ∀L,T2,k. L ⊢ ⋆k ➤* T2 → T2 = ⋆k.
99 #L #T2 #k #H
100 elim (cpqs_inv_atom1 … H) -H //
101 * #K #V #V2 #i #_ #_ #_ #H destruct
102 qed-.
103
104 lemma cpqs_inv_lref1: ∀L,T2,i. L ⊢ #i ➤* T2 →
105                       T2 = #i ∨
106                       ∃∃K,V,V2. ⇩[O, i] L ≡ K. ⓓV &
107                                 K ⊢ V ➤* V2 &
108                                 ⇧[O, i + 1] V2 ≡ T2.
109 #L #T2 #i #H
110 elim (cpqs_inv_atom1 … H) -H /2 width=1/
111 * #K #V #V2 #j #HLK #HV2 #HVT2 #H destruct /3 width=6/
112 qed-.
113
114 lemma cpqs_inv_gref1: ∀L,T2,p. L ⊢ §p ➤* T2 → T2 = §p.
115 #L #T2 #p #H
116 elim (cpqs_inv_atom1 … H) -H //
117 * #K #V #V2 #i #_ #_ #_ #H destruct
118 qed-.
119
120 fact cpqs_inv_bind1_aux: ∀L,U1,U2. L ⊢ U1 ➤* U2 →
121                          ∀a,I,V1,T1. U1 = ⓑ{a,I} V1. T1 → (
122                          ∃∃V2,T2. L ⊢ V1 ➤* V2 &
123                                   L. ⓑ{I} V1 ⊢ T1 ➤* T2 &
124                                   U2 = ⓑ{a,I} V2. T2
125                          ) ∨
126                          ∃∃T. L.ⓓV1 ⊢ T1 ➤* T & ⇧[0, 1] U2 ≡ T & a = true & I = Abbr.
127 #L #U1 #U2 * -L -U1 -U2
128 [ #I #L #b #J #W1 #U1 #H destruct
129 | #L #K #V #V2 #W2 #i #_ #_ #_ #b #J #W1 #U1 #H destruct
130 | #a #I #L #V1 #V2 #T1 #T2 #HV12 #HT12 #b #J #W1 #U1 #H destruct /3 width=5/
131 | #I #L #V1 #V2 #T1 #T2 #_ #_ #b #J #W1 #U1 #H destruct
132 | #L #V #T1 #T #T2 #HT1 #HT2 #b #J #W1 #U1 #H destruct /3 width=3/
133 | #L #V #T1 #T2 #_ #b #J #W1 #U1 #H destruct
134 ]
135 qed-.
136
137 lemma cpqs_inv_bind1: ∀a,I,L,V1,T1,U2. L ⊢ ⓑ{a,I} V1. T1 ➤* U2 → (
138                       ∃∃V2,T2. L ⊢ V1 ➤* V2 &
139                                L. ⓑ{I} V1 ⊢ T1 ➤* T2 &
140                                U2 = ⓑ{a,I} V2. T2
141                       ) ∨
142                       ∃∃T. L.ⓓV1 ⊢ T1 ➤* T & ⇧[0, 1] U2 ≡ T & a = true & I = Abbr.
143 /2 width=3 by cpqs_inv_bind1_aux/ qed-.
144
145 lemma cpqs_inv_abbr1: ∀a,L,V1,T1,U2. L ⊢ ⓓ{a} V1. T1 ➤* U2 → (
146                       ∃∃V2,T2. L ⊢ V1 ➤* V2 &
147                                L. ⓓ V1 ⊢ T1 ➤* T2 &
148                                U2 = ⓓ{a} V2. T2
149                       ) ∨
150                       ∃∃T. L.ⓓV1 ⊢ T1 ➤* T & ⇧[0, 1] U2 ≡ T & a = true.
151 #a #L #V1 #T1 #U2 #H
152 elim (cpqs_inv_bind1 … H) -H * /3 width=3/ /3 width=5/
153 qed-.
154
155 lemma cpqs_inv_abst1: ∀a,L,V1,T1,U2. L ⊢ ⓛ{a} V1. T1 ➤* U2 →
156                       ∃∃V2,T2. L ⊢ V1 ➤* V2 &
157                                L. ⓛ V1 ⊢ T1 ➤* T2 &
158                                U2 = ⓛ{a} V2. T2.
159 #a #L #V1 #T1 #U2 #H
160 elim (cpqs_inv_bind1 … H) -H *
161 [ /3 width=5/
162 | #T #_ #_ #_ #H destruct
163 ]
164 qed-.
165
166 fact cpqs_inv_flat1_aux: ∀L,U1,U2. L ⊢ U1 ➤* U2 →
167                          ∀I,V1,T1. U1 = ⓕ{I} V1. T1 → (
168                          ∃∃V2,T2. L ⊢ V1 ➤* V2 & L ⊢ T1 ➤* T2 &
169                                   U2 = ⓕ{I} V2. T2
170                          ) ∨
171                          (L ⊢ T1 ➤* U2 ∧ I = Cast).
172 #L #U1 #U2 * -L -U1 -U2
173 [ #I #L #J #W1 #U1 #H destruct
174 | #L #K #V #V2 #W2 #i #_ #_ #_ #J #W1 #U1 #H destruct
175 | #a #I #L #V1 #V2 #T1 #T2 #_ #_ #J #W1 #U1 #H destruct
176 | #I #L #V1 #V2 #T1 #T2 #HV12 #HT12 #J #W1 #U1 #H destruct /3 width=5/
177 | #L #V #T1 #T #T2 #_ #_ #J #W1 #U1 #H destruct
178 | #L #V #T1 #T2 #HT12 #J #W1 #U1 #H destruct /3 width=1/
179 ]
180 qed-.
181
182 lemma cpqs_inv_flat1: ∀I,L,V1,T1,U2. L ⊢ ⓕ{I} V1. T1 ➤* U2 → (
183                       ∃∃V2,T2. L ⊢ V1 ➤* V2 & L ⊢ T1 ➤* T2 &
184                                U2 = ⓕ{I} V2. T2
185                       ) ∨
186                       (L ⊢ T1 ➤* U2 ∧ I = Cast).
187 /2 width=3 by cpqs_inv_flat1_aux/ qed-.
188
189 lemma cpqs_inv_appl1: ∀L,V1,T1,U2. L ⊢ ⓐ V1. T1 ➤* U2 →
190                       ∃∃V2,T2. L ⊢ V1 ➤* V2 & L ⊢ T1 ➤* T2 &
191                                U2 = ⓐ V2. T2.
192 #L #V1 #T1 #U2 #H elim (cpqs_inv_flat1 … H) -H *
193 [ /3 width=5/
194 | #_ #H destruct
195 ]
196 qed-.
197
198 lemma cpqs_inv_cast1: ∀L,V1,T1,U2. L ⊢ ⓝ V1. T1 ➤* U2 → (
199                       ∃∃V2,T2. L ⊢ V1 ➤* V2 & L ⊢ T1 ➤* T2 &
200                                U2 = ⓝ V2. T2
201                       ) ∨
202                       L ⊢ T1 ➤* U2.
203 #L #V1 #T1 #U2 #H elim (cpqs_inv_flat1 … H) -H * /2 width=1/ /3 width=5/
204 qed-.
205
206 (* Basic forward lemmas *****************************************************)
207
208 lemma cpqs_fwd_shift1: ∀L1,L,T1,T. L ⊢ L1 @@ T1 ➤* T →
209                        ∃∃L2,T2. |L1| = |L2| & T = L2 @@ T2.
210 #L1 @(lenv_ind_dx … L1) -L1 normalize
211 [ #L #T1 #T #HT1
212   @(ex2_2_intro … (⋆)) // (**) (* explicit constructor *)
213 | #I #L1 #V1 #IH #L #T1 #X
214   >shift_append_assoc normalize #H
215   elim (cpqs_inv_bind1 … H) -H *
216   [ #V0 #T0 #_ #HT10 #H destruct
217     elim (IH … HT10) -IH -HT10 #L2 #T2 #HL12 #H destruct
218     >append_length >HL12 -HL12
219     @(ex2_2_intro … (⋆.ⓑ{I}V0@@L2) T2) [ >append_length ] // /2 width=3/ (**) (* explicit constructor *)
220   | #T #_ #_ #H destruct
221   ]
222 ]
223 qed-.