]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2A/computation/lsubc.ma
milestone update in ground_2 and basic_2A
[helm.git] / matita / matita / contribs / lambdadelta / basic_2A / computation / lsubc.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/xoa/ex_6_3.ma".
16 include "ground_2/xoa/ex_7_4.ma".
17 include "basic_2A/notation/relations/lrsubeqc_4.ma".
18 include "basic_2A/static/lsubr.ma".
19 include "basic_2A/static/aaa.ma".
20 include "basic_2A/computation/gcp_cr.ma".
21
22 (* LOCAL ENVIRONMENT REFINEMENT FOR GENERIC REDUCIBILITY ********************)
23
24 inductive lsubc (RP) (G): relation lenv ≝
25 | lsubc_atom: lsubc RP G (⋆) (⋆)
26 | lsubc_pair: ∀I,L1,L2,V. lsubc RP G L1 L2 → lsubc RP G (L1.ⓑ{I}V) (L2.ⓑ{I}V)
27 | lsubc_beta: ∀L1,L2,V,W,A. ⦃G, L1, V⦄ ϵ[RP] 〚A〛 → ⦃G, L1, W⦄ ϵ[RP] 〚A〛 → ⦃G, L2⦄ ⊢ W ⁝ A →
28               lsubc RP G L1 L2 → lsubc RP G (L1. ⓓⓝW.V) (L2.ⓛW)
29 .
30
31 interpretation
32   "local environment refinement (generic reducibility)"
33   'LRSubEqC RP G L1 L2 = (lsubc RP G L1 L2).
34
35 (* Basic inversion lemmas ***************************************************)
36
37 fact lsubc_inv_atom1_aux: ∀RP,G,L1,L2. G ⊢ L1 ⫃[RP] L2 → L1 = ⋆ → L2 = ⋆.
38 #RP #G #L1 #L2 * -L1 -L2
39 [ //
40 | #I #L1 #L2 #V #_ #H destruct
41 | #L1 #L2 #V #W #A #_ #_ #_ #_ #H destruct
42 ]
43 qed-.
44
45 (* Basic_1: was just: csubc_gen_sort_r *)
46 lemma lsubc_inv_atom1: ∀RP,G,L2. G ⊢ ⋆ ⫃[RP] L2 → L2 = ⋆.
47 /2 width=5 by lsubc_inv_atom1_aux/ qed-.
48
49 fact lsubc_inv_pair1_aux: ∀RP,G,L1,L2. G ⊢ L1 ⫃[RP] L2 → ∀I,K1,X. L1 = K1.ⓑ{I}X →
50                           (∃∃K2. G ⊢ K1 ⫃[RP] K2 & L2 = K2.ⓑ{I}X) ∨
51                           ∃∃K2,V,W,A. ⦃G, K1, V⦄ ϵ[RP] 〚A〛 & ⦃G, K1, W⦄ ϵ[RP] 〚A〛 & ⦃G, K2⦄ ⊢ W ⁝ A &
52                                       G ⊢ K1 ⫃[RP] K2 &
53                                       L2 = K2. ⓛW & X = ⓝW.V & I = Abbr.
54 #RP #G #L1 #L2 * -L1 -L2
55 [ #I #K1 #V #H destruct
56 | #J #L1 #L2 #V #HL12 #I #K1 #W #H destruct /3 width=3 by ex2_intro, or_introl/
57 | #L1 #L2 #V1 #W2 #A #HV1 #H1W2 #H2W2 #HL12 #I #K1 #V #H destruct /3 width=10 by ex7_4_intro, or_intror/
58 ]
59 qed-.
60
61 (* Basic_1: was: csubc_gen_head_r *)
62 lemma lsubc_inv_pair1: ∀RP,I,G,K1,L2,X. G ⊢ K1.ⓑ{I}X ⫃[RP] L2 →
63                        (∃∃K2. G ⊢ K1 ⫃[RP] K2 & L2 = K2.ⓑ{I}X) ∨
64                        ∃∃K2,V,W,A. ⦃G, K1, V⦄ ϵ[RP] 〚A〛 & ⦃G, K1, W⦄ ϵ[RP] 〚A〛 & ⦃G, K2⦄ ⊢ W ⁝ A &
65                                    G ⊢ K1 ⫃[RP] K2 &
66                                    L2 = K2.ⓛW & X = ⓝW.V & I = Abbr.
67 /2 width=3 by lsubc_inv_pair1_aux/ qed-.
68
69 fact lsubc_inv_atom2_aux: ∀RP,G,L1,L2. G ⊢ L1 ⫃[RP] L2 → L2 = ⋆ → L1 = ⋆.
70 #RP #G #L1 #L2 * -L1 -L2
71 [ //
72 | #I #L1 #L2 #V #_ #H destruct
73 | #L1 #L2 #V #W #A #_ #_ #_ #_ #H destruct
74 ]
75 qed-.
76
77 (* Basic_1: was just: csubc_gen_sort_l *)
78 lemma lsubc_inv_atom2: ∀RP,G,L1. G ⊢ L1 ⫃[RP] ⋆ → L1 = ⋆.
79 /2 width=5 by lsubc_inv_atom2_aux/ qed-.
80
81 fact lsubc_inv_pair2_aux: ∀RP,G,L1,L2. G ⊢ L1 ⫃[RP] L2 → ∀I,K2,W. L2 = K2.ⓑ{I} W →
82                           (∃∃K1. G ⊢ K1 ⫃[RP] K2 & L1 = K1. ⓑ{I} W) ∨
83                           ∃∃K1,V,A. ⦃G, K1, V⦄ ϵ[RP] 〚A〛 & ⦃G, K1, W⦄ ϵ[RP] 〚A〛 & ⦃G, K2⦄ ⊢ W ⁝ A &
84                                     G ⊢ K1 ⫃[RP] K2 &
85                                     L1 = K1.ⓓⓝW.V & I = Abst.
86 #RP #G #L1 #L2 * -L1 -L2
87 [ #I #K2 #W #H destruct
88 | #J #L1 #L2 #V #HL12 #I #K2 #W #H destruct /3 width=3 by ex2_intro, or_introl/
89 | #L1 #L2 #V1 #W2 #A #HV1 #H1W2 #H2W2 #HL12 #I #K2 #W #H destruct /3 width=8 by ex6_3_intro, or_intror/
90 ]
91 qed-.
92
93 (* Basic_1: was just: csubc_gen_head_l *)
94 lemma lsubc_inv_pair2: ∀RP,I,G,L1,K2,W. G ⊢ L1 ⫃[RP] K2.ⓑ{I} W →
95                        (∃∃K1. G ⊢ K1 ⫃[RP] K2 & L1 = K1.ⓑ{I} W) ∨
96                        ∃∃K1,V,A. ⦃G, K1, V⦄ ϵ[RP] 〚A〛 & ⦃G, K1, W⦄ ϵ[RP] 〚A〛 & ⦃G, K2⦄ ⊢ W ⁝ A &
97                                  G ⊢ K1 ⫃[RP] K2 &
98                                  L1 = K1.ⓓⓝW.V & I = Abst.
99 /2 width=3 by lsubc_inv_pair2_aux/ qed-.
100
101 (* Basic forward lemmas *****************************************************)
102
103 lemma lsubc_fwd_lsubr: ∀RP,G,L1,L2. G ⊢ L1 ⫃[RP] L2 → L1 ⫃ L2.
104 #RP #G #L1 #L2 #H elim H -L1 -L2 /2 width=1 by lsubr_pair, lsubr_beta/
105 qed-.
106
107 (* Basic properties *********************************************************)
108
109 (* Basic_1: was just: csubc_refl *)
110 lemma lsubc_refl: ∀RP,G,L. G ⊢ L ⫃[RP] L.
111 #RP #G #L elim L -L /2 width=1 by lsubc_pair/
112 qed.
113
114 (* Basic_1: removed theorems 3:
115             csubc_clear_conf csubc_getl_conf csubc_csuba
116 *)