]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2A/dynamic/lsubsv.ma
milestone update in ground_2 and basic_2A
[helm.git] / matita / matita / contribs / lambdadelta / basic_2A / dynamic / lsubsv.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/xoa/ex_7_3.ma".
16 include "ground_2/xoa/ex_8_4.ma".
17 include "basic_2A/notation/relations/lrsubeqv_5.ma".
18 include "basic_2A/dynamic/shnv.ma".
19
20 (* LOCAL ENVIRONMENT REFINEMENT FOR STRATIFIED NATIVE VALIDITY **************)
21
22 (* Note: this is not transitive *)
23 inductive lsubsv (h) (g) (G): relation lenv ≝
24 | lsubsv_atom: lsubsv h g G (⋆) (⋆)
25 | lsubsv_pair: ∀I,L1,L2,V. lsubsv h g G L1 L2 →
26                lsubsv h g G (L1.ⓑ{I}V) (L2.ⓑ{I}V)
27 | lsubsv_beta: ∀L1,L2,W,V,d1. ⦃G, L1⦄ ⊢ ⓝW.V ¡[h, g, d1] → ⦃G, L2⦄ ⊢ W ¡[h, g] →
28                ⦃G, L1⦄ ⊢ V ▪[h, g] d1+1 → ⦃G, L2⦄ ⊢ W ▪[h, g] d1 →
29                lsubsv h g G L1 L2 → lsubsv h g G (L1.ⓓⓝW.V) (L2.ⓛW)
30 .
31
32 interpretation
33   "local environment refinement (stratified native validity)"
34   'LRSubEqV h g G L1 L2 = (lsubsv h g G L1 L2).
35
36 (* Basic inversion lemmas ***************************************************)
37
38 fact lsubsv_inv_atom1_aux: ∀h,g,G,L1,L2. G ⊢ L1 ⫃¡[h, g] L2 → L1 = ⋆ → L2 = ⋆.
39 #h #g #G #L1 #L2 * -L1 -L2
40 [ //
41 | #I #L1 #L2 #V #_ #H destruct
42 | #L1 #L2 #W #V #d1 #_ #_ #_ #_ #_ #H destruct
43 ]
44 qed-.
45
46 lemma lsubsv_inv_atom1: ∀h,g,G,L2. G ⊢ ⋆ ⫃¡[h, g] L2 → L2 = ⋆.
47 /2 width=6 by lsubsv_inv_atom1_aux/ qed-.
48
49 fact lsubsv_inv_pair1_aux: ∀h,g,G,L1,L2. G ⊢ L1 ⫃¡[h, g] L2 →
50                            ∀I,K1,X. L1 = K1.ⓑ{I}X →
51                            (∃∃K2. G ⊢ K1 ⫃¡[h, g] K2 & L2 = K2.ⓑ{I}X) ∨
52                            ∃∃K2,W,V,d1. ⦃G, K1⦄ ⊢ ⓝW.V ¡[h, g, d1] & ⦃G, K2⦄ ⊢ W ¡[h, g] &
53                                        ⦃G, K1⦄ ⊢ V ▪[h, g] d1+1 & ⦃G, K2⦄ ⊢ W ▪[h, g] d1 &
54                                         G ⊢ K1 ⫃¡[h, g] K2 &
55                                         I = Abbr & L2 = K2.ⓛW & X = ⓝW.V.
56 #h #g #G #L1 #L2 * -L1 -L2
57 [ #J #K1 #X #H destruct
58 | #I #L1 #L2 #V #HL12 #J #K1 #X #H destruct /3 width=3 by ex2_intro, or_introl/
59 | #L1 #L2 #W #V #d1 #HWV #HW #HVd1 #HWd1 #HL12 #J #K1 #X #H destruct /3 width=11 by or_intror, ex8_4_intro/
60 ]
61 qed-.
62
63 lemma lsubsv_inv_pair1: ∀h,g,I,G,K1,L2,X. G ⊢ K1.ⓑ{I}X ⫃¡[h, g] L2 →
64                         (∃∃K2. G ⊢ K1 ⫃¡[h, g] K2 & L2 = K2.ⓑ{I}X) ∨
65                         ∃∃K2,W,V,d1. ⦃G, K1⦄ ⊢ ⓝW.V ¡[h, g, d1] & ⦃G, K2⦄ ⊢ W ¡[h, g] &
66                                      ⦃G, K1⦄ ⊢ V ▪[h, g] d1+1 & ⦃G, K2⦄ ⊢ W ▪[h, g] d1 &
67                                      G ⊢ K1 ⫃¡[h, g] K2 &
68                                      I = Abbr & L2 = K2.ⓛW & X = ⓝW.V.
69 /2 width=3 by lsubsv_inv_pair1_aux/ qed-.
70
71 fact lsubsv_inv_atom2_aux: ∀h,g,G,L1,L2. G ⊢ L1 ⫃¡[h, g] L2 → L2 = ⋆ → L1 = ⋆.
72 #h #g #G #L1 #L2 * -L1 -L2
73 [ //
74 | #I #L1 #L2 #V #_ #H destruct
75 | #L1 #L2 #W #V #d1 #_ #_ #_ #_ #_ #H destruct
76 ]
77 qed-.
78
79 lemma lsubsv_inv_atom2: ∀h,g,G,L1. G ⊢ L1 ⫃¡[h, g] ⋆ → L1 = ⋆.
80 /2 width=6 by lsubsv_inv_atom2_aux/ qed-.
81
82 fact lsubsv_inv_pair2_aux: ∀h,g,G,L1,L2. G ⊢ L1 ⫃¡[h, g] L2 →
83                            ∀I,K2,W. L2 = K2.ⓑ{I}W →
84                            (∃∃K1. G ⊢ K1 ⫃¡[h, g] K2 & L1 = K1.ⓑ{I}W) ∨
85                            ∃∃K1,V,d1. ⦃G, K1⦄ ⊢ ⓝW.V ¡[h, g, d1] & ⦃G, K2⦄ ⊢ W ¡[h, g] &
86                                       ⦃G, K1⦄ ⊢ V ▪[h, g] d1+1 & ⦃G, K2⦄ ⊢ W ▪[h, g] d1 &
87                                       G ⊢ K1 ⫃¡[h, g] K2 & I = Abst & L1 = K1.ⓓⓝW.V.
88 #h #g #G #L1 #L2 * -L1 -L2
89 [ #J #K2 #U #H destruct
90 | #I #L1 #L2 #V #HL12 #J #K2 #U #H destruct /3 width=3 by ex2_intro, or_introl/
91 | #L1 #L2 #W #V #d1 #HWV #HW #HVd1 #HWd1 #HL12 #J #K2 #U #H destruct /3 width=8 by or_intror, ex7_3_intro/
92 ]
93 qed-.
94
95 lemma lsubsv_inv_pair2: ∀h,g,I,G,L1,K2,W. G ⊢ L1 ⫃¡[h, g] K2.ⓑ{I}W →
96                         (∃∃K1. G ⊢ K1 ⫃¡[h, g] K2 & L1 = K1.ⓑ{I}W) ∨
97                         ∃∃K1,V,d1. ⦃G, K1⦄ ⊢ ⓝW.V ¡[h, g, d1] & ⦃G, K2⦄ ⊢ W ¡[h, g] &
98                                    ⦃G, K1⦄ ⊢ V ▪[h, g] d1+1 & ⦃G, K2⦄ ⊢ W ▪[h, g] d1 &
99                                    G ⊢ K1 ⫃¡[h, g] K2 & I = Abst & L1 = K1.ⓓⓝW.V.
100 /2 width=3 by lsubsv_inv_pair2_aux/ qed-.
101
102 (* Basic forward lemmas *****************************************************)
103
104 lemma lsubsv_fwd_lsubr: ∀h,g,G,L1,L2. G ⊢ L1 ⫃¡[h, g] L2 → L1 ⫃ L2.
105 #h #g #G #L1 #L2 #H elim H -L1 -L2 /2 width=1 by lsubr_pair, lsubr_beta/
106 qed-.
107
108 (* Basic properties *********************************************************)
109
110 lemma lsubsv_refl: ∀h,g,G,L. G ⊢ L ⫃¡[h, g] L.
111 #h #g #G #L elim L -L /2 width=1 by lsubsv_pair/
112 qed.
113
114 lemma lsubsv_cprs_trans: ∀h,g,G,L1,L2. G ⊢ L1 ⫃¡[h, g] L2 →
115                          ∀T1,T2. ⦃G, L2⦄ ⊢ T1 ➡* T2 → ⦃G, L1⦄ ⊢ T1 ➡* T2.
116 /3 width=6 by lsubsv_fwd_lsubr, lsubr_cprs_trans/
117 qed-.
118
119 (* Note: the constant 0 cannot be generalized *)
120 lemma lsubsv_drop_O1_conf: ∀h,g,G,L1,L2. G ⊢ L1 ⫃¡[h, g] L2 →
121                            ∀K1,s,m. ⬇[s, 0, m] L1 ≡ K1 →
122                            ∃∃K2. G ⊢ K1 ⫃¡[h, g] K2 & ⬇[s, 0, m] L2 ≡ K2.
123 #h #g #G #L1 #L2 #H elim H -L1 -L2
124 [ /2 width=3 by ex2_intro/
125 | #I #L1 #L2 #V #_ #IHL12 #K1 #s #m #H
126   elim (drop_inv_O1_pair1 … H) -H * #Hm #HLK1
127   [ destruct
128     elim (IHL12 L1 s 0) -IHL12 // #X #HL12 #H
129     <(drop_inv_O2 … H) in HL12; -H /3 width=3 by lsubsv_pair, drop_pair, ex2_intro/
130   | elim (IHL12 … HLK1) -L1 /3 width=3 by drop_drop_lt, ex2_intro/
131   ]
132 | #L1 #L2 #W #V #d1 #HWV #HW #HVd1 #HWd1 #_ #IHL12 #K1 #s #m #H
133   elim (drop_inv_O1_pair1 … H) -H * #Hm #HLK1
134   [ destruct
135     elim (IHL12 L1 s 0) -IHL12 // #X #HL12 #H
136     <(drop_inv_O2 … H) in HL12; -H /3 width=4 by lsubsv_beta, drop_pair, ex2_intro/
137   | elim (IHL12 … HLK1) -L1 /3 width=3 by drop_drop_lt, ex2_intro/
138   ]
139 ]
140 qed-.
141
142 (* Note: the constant 0 cannot be generalized *)
143 lemma lsubsv_drop_O1_trans: ∀h,g,G,L1,L2. G ⊢ L1 ⫃¡[h, g] L2 →
144                             ∀K2,s, m. ⬇[s, 0, m] L2 ≡ K2 →
145                             ∃∃K1. G ⊢ K1 ⫃¡[h, g] K2 & ⬇[s, 0, m] L1 ≡ K1.
146 #h #g #G #L1 #L2 #H elim H -L1 -L2
147 [ /2 width=3 by ex2_intro/
148 | #I #L1 #L2 #V #_ #IHL12 #K2 #s #m #H
149   elim (drop_inv_O1_pair1 … H) -H * #Hm #HLK2
150   [ destruct
151     elim (IHL12 L2 s 0) -IHL12 // #X #HL12 #H
152     <(drop_inv_O2 … H) in HL12; -H /3 width=3 by lsubsv_pair, drop_pair, ex2_intro/
153   | elim (IHL12 … HLK2) -L2 /3 width=3 by drop_drop_lt, ex2_intro/
154   ]
155 | #L1 #L2 #W #V #d1 #HWV #HW #HVd1 #HWd1 #_ #IHL12 #K2 #s #m #H
156   elim (drop_inv_O1_pair1 … H) -H * #Hm #HLK2
157   [ destruct
158     elim (IHL12 L2 s 0) -IHL12 // #X #HL12 #H
159     <(drop_inv_O2 … H) in HL12; -H /3 width=4 by lsubsv_beta, drop_pair, ex2_intro/
160   | elim (IHL12 … HLK2) -L2 /3 width=3 by drop_drop_lt, ex2_intro/
161   ]
162 ]
163 qed-.