]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2A/multiple/frees.ma
milestone update in ground_2 and basic_2A
[helm.git] / matita / matita / contribs / lambdadelta / basic_2A / multiple / frees.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/xoa/ex_4_3.ma".
16 include "ground_2/xoa/ex_5_4.ma".
17 include "ground_2/ynat/ynat_plus.ma".
18 include "basic_2A/notation/relations/freestar_4.ma".
19 include "basic_2A/substitution/lift_neg.ma".
20 include "basic_2A/substitution/drop.ma".
21
22 (* CONTEXT-SENSITIVE FREE VARIABLES *****************************************)
23
24 inductive frees: relation4 ynat lenv term nat ≝
25 | frees_eq: ∀L,U,l,i. (∀T. ⬆[i, 1] T ≡ U → ⊥) → frees l L U i
26 | frees_be: ∀I,L,K,U,W,l,i,j. l ≤ yinj j → j < i →
27             (∀T. ⬆[j, 1] T ≡ U → ⊥) → ⬇[j]L ≡ K.ⓑ{I}W →
28             frees 0 K W (i-j-1) → frees l L U i.
29
30 interpretation
31    "context-sensitive free variables (term)"
32    'FreeStar L i l U = (frees l L U i).
33
34 definition frees_trans: predicate (relation3 lenv term term) ≝
35                         λR. ∀L,U1,U2,i. R L U1 U2 → L ⊢ i ϵ 𝐅*[0]⦃U2⦄ → L ⊢ i ϵ 𝐅*[0]⦃U1⦄.
36
37 (* Basic inversion lemmas ***************************************************)
38
39 lemma frees_inv: ∀L,U,l,i. L ⊢ i ϵ 𝐅*[l]⦃U⦄ →
40                  (∀T. ⬆[i, 1] T ≡ U → ⊥) ∨
41                  ∃∃I,K,W,j. l ≤ yinj j & j < i & (∀T. ⬆[j, 1] T ≡ U → ⊥) &
42                             ⬇[j]L ≡ K.ⓑ{I}W & K ⊢ (i-j-1) ϵ 𝐅*[yinj 0]⦃W⦄.
43 #L #U #l #i * -L -U -l -i /4 width=9 by ex5_4_intro, or_intror, or_introl/
44 qed-.
45
46 lemma frees_inv_sort: ∀L,l,i,k. L ⊢ i ϵ 𝐅*[l]⦃⋆k⦄ → ⊥.
47 #L #l #i #k #H elim (frees_inv … H) -H [|*] /2 width=2 by/
48 qed-.
49
50 lemma frees_inv_gref: ∀L,l,i,p. L ⊢ i ϵ 𝐅*[l]⦃§p⦄ → ⊥.
51 #L #l #i #p #H elim (frees_inv … H) -H [|*] /2 width=2 by/
52 qed-.
53
54 lemma frees_inv_lref: ∀L,l,j,i. L ⊢ i ϵ 𝐅*[l]⦃#j⦄ →
55                       j = i ∨
56                       ∃∃I,K,W. l ≤ yinj j & j < i & ⬇[j] L ≡ K.ⓑ{I}W & K ⊢ (i-j-1) ϵ 𝐅*[yinj 0]⦃W⦄.
57 #L #l #x #i #H elim (frees_inv … H) -H
58 [ /4 width=2 by nlift_inv_lref_be_SO, or_introl/
59 | * #I #K #W #j #Hlj #Hji #Hnx #HLK #HW
60   >(nlift_inv_lref_be_SO … Hnx) -x /3 width=5 by ex4_3_intro, or_intror/
61 ]
62 qed-.
63
64 lemma frees_inv_lref_free: ∀L,l,j,i. L ⊢ i ϵ 𝐅*[l]⦃#j⦄ → |L| ≤ j → j = i.
65 #L #l #j #i #H #Hj elim (frees_inv_lref … H) -H //
66 * #I #K #W #_ #_ #HLK lapply (drop_fwd_length_lt2 … HLK) -I
67 #H elim (lt_refl_false j) /2 width=3 by lt_to_le_to_lt/
68 qed-.
69
70 lemma frees_inv_lref_skip: ∀L,l,j,i. L ⊢ i ϵ 𝐅*[l]⦃#j⦄ → yinj j < l → j = i.
71 #L #l #j #i #H #Hjl elim (frees_inv_lref … H) -H //
72 * #I #K #W #Hlj elim (ylt_yle_false … Hlj) -Hlj //
73 qed-. 
74
75 lemma frees_inv_lref_ge: ∀L,l,j,i. L ⊢ i ϵ 𝐅*[l]⦃#j⦄ → i ≤ j → j = i.
76 #L #l #j #i #H #Hij elim (frees_inv_lref … H) -H //
77 * #I #K #W #_ #Hji elim (lt_refl_false j) -I -L -K -W -l /2 width=3 by lt_to_le_to_lt/
78 qed-.
79
80 lemma frees_inv_lref_lt: ∀L,l,j,i.L ⊢ i ϵ 𝐅*[l]⦃#j⦄ → j < i →
81                          ∃∃I,K,W. l ≤ yinj j & ⬇[j] L ≡ K.ⓑ{I}W & K ⊢ (i-j-1) ϵ 𝐅*[yinj 0]⦃W⦄.
82 #L #l #j #i #H #Hji elim (frees_inv_lref … H) -H
83 [ #H elim (lt_refl_false j) //
84 | * /2 width=5 by ex3_3_intro/
85 ]
86 qed-.
87
88 lemma frees_inv_bind: ∀a,I,L,W,U,l,i. L ⊢ i ϵ 𝐅*[l]⦃ⓑ{a,I}W.U⦄ →
89                       L ⊢ i ϵ 𝐅*[l]⦃W⦄ ∨ L.ⓑ{I}W ⊢ i+1 ϵ 𝐅*[↑l]⦃U⦄ .
90 #a #J #L #V #U #l #i #H elim (frees_inv … H) -H
91 [ #HnX elim (nlift_inv_bind … HnX) -HnX
92   /4 width=2 by frees_eq, or_intror, or_introl/
93 | * #I #K #W #j #Hlj #Hji #HnX #HLK #HW elim (nlift_inv_bind … HnX) -HnX
94   [ /4 width=9 by frees_be, or_introl/
95   | #HnT @or_intror @(frees_be … HnT) -HnT
96     [4,5,6: /2 width=1 by drop_drop, yle_succ, lt_minus_to_plus/
97     |7: >minus_plus_plus_l //
98     |*: skip
99     ]
100   ]
101 ]
102 qed-.
103
104 lemma frees_inv_flat: ∀I,L,W,U,l,i. L ⊢ i ϵ 𝐅*[l]⦃ⓕ{I}W.U⦄ →
105                       L ⊢ i ϵ 𝐅*[l]⦃W⦄ ∨ L ⊢ i ϵ 𝐅*[l]⦃U⦄ .
106 #J #L #V #U #l #i #H elim (frees_inv … H) -H
107 [ #HnX elim (nlift_inv_flat … HnX) -HnX
108   /4 width=2 by frees_eq, or_intror, or_introl/
109 | * #I #K #W #j #Hlj #Hji #HnX #HLK #HW elim (nlift_inv_flat … HnX) -HnX
110   /4 width=9 by frees_be, or_intror, or_introl/
111 ]
112 qed-.
113
114 (* Basic properties *********************************************************)
115
116 lemma frees_lref_eq: ∀L,l,i. L ⊢ i ϵ 𝐅*[l]⦃#i⦄.
117 /3 width=7 by frees_eq, lift_inv_lref2_be/ qed.
118
119 lemma frees_lref_be: ∀I,L,K,W,l,i,j. l ≤ yinj j → j < i → ⬇[j]L ≡ K.ⓑ{I}W →
120                      K ⊢ i-j-1 ϵ 𝐅*[0]⦃W⦄ → L ⊢ i ϵ 𝐅*[l]⦃#j⦄.
121 /3 width=9 by frees_be, lift_inv_lref2_be/ qed.
122
123 lemma frees_bind_sn: ∀a,I,L,W,U,l,i. L ⊢ i ϵ 𝐅*[l]⦃W⦄ →
124                      L ⊢ i ϵ 𝐅*[l]⦃ⓑ{a,I}W.U⦄.
125 #a #I #L #W #U #l #i #H elim (frees_inv … H) -H [|*]
126 /4 width=9 by frees_be, frees_eq, nlift_bind_sn/
127 qed.
128
129 lemma pippo (j) (i): O < j → j < i+1 → ↓j< i.
130 /2 width=1 by lt_plus_to_minus/ qed-.
131
132 lemma frees_bind_dx: ∀a,I,L,W,U,l,i. L.ⓑ{I}W ⊢ i+1 ϵ 𝐅*[↑l]⦃U⦄ →
133                      L ⊢ i ϵ 𝐅*[l]⦃ⓑ{a,I}W.U⦄.
134 #a #J #L #V #U #l #i #H elim (frees_inv … H) -H
135 [ /4 width=9 by frees_eq, nlift_bind_dx/
136 | * #I #K #W #j #Hlj #Hji #HnU #HLK #HW
137   elim (yle_inv_succ_sn_lt … Hlj) -Hlj #Hyj #H
138   lapply (ylt_inv_inj … H) -H #Hi
139   >(plus_minus_m_m j 1) in HnU; // <minus_le_minus_minus_comm in HW;
140   /4 width=9 by frees_be, nlift_bind_dx, drop_inv_drop1_lt, yle_plus_dx1_trans, monotonic_lt_minus_l/
141 ]
142 qed.
143
144 lemma frees_flat_sn: ∀I,L,W,U,l,i. L ⊢ i ϵ 𝐅*[l]⦃W⦄ →
145                      L ⊢ i ϵ 𝐅*[l]⦃ⓕ{I}W.U⦄.
146 #I #L #W #U #l #i #H elim (frees_inv … H) -H [|*]
147 /4 width=9 by frees_be, frees_eq, nlift_flat_sn/
148 qed.
149
150 lemma frees_flat_dx: ∀I,L,W,U,l,i. L ⊢ i ϵ 𝐅*[l]⦃U⦄ →
151                      L ⊢ i ϵ 𝐅*[l]⦃ⓕ{I}W.U⦄.
152 #I #L #W #U #l #i #H elim (frees_inv … H) -H [|*]
153 /4 width=9 by frees_be, frees_eq, nlift_flat_dx/
154 qed.
155
156 lemma frees_weak: ∀L,U,l1,i. L ⊢ i ϵ 𝐅*[l1]⦃U⦄ →
157                   ∀l2. l2 ≤ l1 → L ⊢ i ϵ 𝐅*[l2]⦃U⦄.
158 #L #U #l1 #i #H elim H -L -U -l1 -i
159 /3 width=9 by frees_be, frees_eq, yle_trans/
160 qed-.
161
162 (* Advanced inversion lemmas ************************************************)
163
164 lemma frees_inv_bind_O: ∀a,I,L,W,U,i. L ⊢ i ϵ 𝐅*[0]⦃ⓑ{a,I}W.U⦄ →
165                         L ⊢ i ϵ 𝐅*[0]⦃W⦄ ∨ L.ⓑ{I}W ⊢ i+1 ϵ 𝐅*[0]⦃U⦄ .
166 #a #I #L #W #U #i #H elim (frees_inv_bind … H) -H
167 /3 width=3 by frees_weak, or_intror, or_introl/
168 qed-.