]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2A/multiple/llpx_sn.ma
update in lambdadelta
[helm.git] / matita / matita / contribs / lambdadelta / basic_2A / multiple / llpx_sn.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2A/ynat/ynat_plus.ma".
16 include "basic_2A/substitution/drop.ma".
17
18 (* LAZY SN POINTWISE EXTENSION OF A CONTEXT-SENSITIVE REALTION FOR TERMS ****)
19
20 inductive llpx_sn (R:relation3 lenv term term): relation4 ynat term lenv lenv ≝
21 | llpx_sn_sort: ∀L1,L2,l,k. |L1| = |L2| → llpx_sn R l (⋆k) L1 L2
22 | llpx_sn_skip: ∀L1,L2,l,i. |L1| = |L2| → yinj i < l → llpx_sn R l (#i) L1 L2
23 | llpx_sn_lref: ∀I,L1,L2,K1,K2,V1,V2,l,i. l ≤ yinj i →
24                 ⬇[i] L1 ≡ K1.ⓑ{I}V1 → ⬇[i] L2 ≡ K2.ⓑ{I}V2 →
25                 llpx_sn R (yinj 0) V1 K1 K2 → R K1 V1 V2 → llpx_sn R l (#i) L1 L2
26 | llpx_sn_free: ∀L1,L2,l,i. |L1| ≤ i → |L2| ≤ i → |L1| = |L2| → llpx_sn R l (#i) L1 L2
27 | llpx_sn_gref: ∀L1,L2,l,p. |L1| = |L2| → llpx_sn R l (§p) L1 L2
28 | llpx_sn_bind: ∀a,I,L1,L2,V,T,l.
29                 llpx_sn R l V L1 L2 → llpx_sn R (⫯l) T (L1.ⓑ{I}V) (L2.ⓑ{I}V) →
30                 llpx_sn R l (ⓑ{a,I}V.T) L1 L2
31 | llpx_sn_flat: ∀I,L1,L2,V,T,l.
32                 llpx_sn R l V L1 L2 → llpx_sn R l T L1 L2 → llpx_sn R l (ⓕ{I}V.T) L1 L2
33 .
34
35 (* Basic inversion lemmas ***************************************************)
36
37 fact llpx_sn_inv_bind_aux: ∀R,L1,L2,X,l. llpx_sn R l X L1 L2 →
38                            ∀a,I,V,T. X = ⓑ{a,I}V.T →
39                            llpx_sn R l V L1 L2 ∧ llpx_sn R (⫯l) T (L1.ⓑ{I}V) (L2.ⓑ{I}V).
40 #R #L1 #L2 #X #l * -L1 -L2 -X -l
41 [ #L1 #L2 #l #k #_ #b #J #W #U #H destruct
42 | #L1 #L2 #l #i #_ #_ #b #J #W #U #H destruct
43 | #I #L1 #L2 #K1 #K2 #V1 #V2 #l #i #_ #_ #_ #_ #_ #b #J #W #U #H destruct
44 | #L1 #L2 #l #i #_ #_ #_ #b #J #W #U #H destruct
45 | #L1 #L2 #l #p #_ #b #J #W #U #H destruct
46 | #a #I #L1 #L2 #V #T #l #HV #HT #b #J #W #U #H destruct /2 width=1 by conj/
47 | #I #L1 #L2 #V #T #l #_ #_ #b #J #W #U #H destruct
48 ]
49 qed-.
50
51 lemma llpx_sn_inv_bind: ∀R,a,I,L1,L2,V,T,l. llpx_sn R l (ⓑ{a,I}V.T) L1 L2 →
52                         llpx_sn R l V L1 L2 ∧ llpx_sn R (⫯l) T (L1.ⓑ{I}V) (L2.ⓑ{I}V).
53 /2 width=4 by llpx_sn_inv_bind_aux/ qed-.
54
55 fact llpx_sn_inv_flat_aux: ∀R,L1,L2,X,l. llpx_sn R l X L1 L2 →
56                            ∀I,V,T. X = ⓕ{I}V.T →
57                            llpx_sn R l V L1 L2 ∧ llpx_sn R l T L1 L2.
58 #R #L1 #L2 #X #l * -L1 -L2 -X -l
59 [ #L1 #L2 #l #k #_ #J #W #U #H destruct
60 | #L1 #L2 #l #i #_ #_ #J #W #U #H destruct
61 | #I #L1 #L2 #K1 #K2 #V1 #V2 #l #i #_ #_ #_ #_ #_ #J #W #U #H destruct
62 | #L1 #L2 #l #i #_ #_ #_ #J #W #U #H destruct
63 | #L1 #L2 #l #p #_ #J #W #U #H destruct
64 | #a #I #L1 #L2 #V #T #l #_ #_ #J #W #U #H destruct
65 | #I #L1 #L2 #V #T #l #HV #HT #J #W #U #H destruct /2 width=1 by conj/
66 ]
67 qed-.
68
69 lemma llpx_sn_inv_flat: ∀R,I,L1,L2,V,T,l. llpx_sn R l (ⓕ{I}V.T) L1 L2 →
70                         llpx_sn R l V L1 L2 ∧ llpx_sn R l T L1 L2.
71 /2 width=4 by llpx_sn_inv_flat_aux/ qed-.
72
73 (* Basic forward lemmas *****************************************************)
74
75 lemma llpx_sn_fwd_length: ∀R,L1,L2,T,l. llpx_sn R l T L1 L2 → |L1| = |L2|.
76 #R #L1 #L2 #T #l #H elim H -L1 -L2 -T -l //
77 #I #L1 #L2 #K1 #K2 #V1 #V2 #l #i #_ #HLK1 #HLK2 #_ #_ #HK12
78 lapply (drop_fwd_length … HLK1) -HLK1
79 lapply (drop_fwd_length … HLK2) -HLK2
80 normalize //
81 qed-.
82
83 lemma llpx_sn_fwd_drop_sn: ∀R,L1,L2,T,l. llpx_sn R l T L1 L2 →
84                             ∀K1,i. ⬇[i] L1 ≡ K1 → ∃K2. ⬇[i] L2 ≡ K2.
85 #R #L1 #L2 #T #l #H #K1 #i #HLK1 lapply (llpx_sn_fwd_length … H) -H
86 #HL12 lapply (drop_fwd_length_le2 … HLK1) -HLK1 /2 width=1 by drop_O1_le/
87 qed-.
88
89 lemma llpx_sn_fwd_drop_dx: ∀R,L1,L2,T,l. llpx_sn R l T L1 L2 →
90                             ∀K2,i. ⬇[i] L2 ≡ K2 → ∃K1. ⬇[i] L1 ≡ K1.
91 #R #L1 #L2 #T #l #H #K2 #i #HLK2 lapply (llpx_sn_fwd_length … H) -H
92 #HL12 lapply (drop_fwd_length_le2 … HLK2) -HLK2 /2 width=1 by drop_O1_le/
93 qed-.
94
95 fact llpx_sn_fwd_lref_aux: ∀R,L1,L2,X,l. llpx_sn R l X L1 L2 → ∀i. X = #i →
96                            ∨∨ |L1| ≤ i ∧ |L2| ≤ i
97                             | yinj i < l
98                             | ∃∃I,K1,K2,V1,V2. ⬇[i] L1 ≡ K1.ⓑ{I}V1 &
99                                                ⬇[i] L2 ≡ K2.ⓑ{I}V2 &
100                                                llpx_sn R (yinj 0) V1 K1 K2 &
101                                                R K1 V1 V2 & l ≤ yinj i.
102 #R #L1 #L2 #X #l * -L1 -L2 -X -l
103 [ #L1 #L2 #l #k #_ #j #H destruct
104 | #L1 #L2 #l #i #_ #Hil #j #H destruct /2 width=1 by or3_intro1/
105 | #I #L1 #L2 #K1 #K2 #V1 #V2 #l #i #Hli #HLK1 #HLK2 #HK12 #HV12 #j #H destruct
106   /3 width=9 by or3_intro2, ex5_5_intro/
107 | #L1 #L2 #l #i #HL1 #HL2 #_ #j #H destruct /3 width=1 by or3_intro0, conj/
108 | #L1 #L2 #l #p #_ #j #H destruct
109 | #a #I #L1 #L2 #V #T #l #_ #_ #j #H destruct
110 | #I #L1 #L2 #V #T #l #_ #_ #j #H destruct
111 ]
112 qed-.
113
114 lemma llpx_sn_fwd_lref: ∀R,L1,L2,l,i. llpx_sn R l (#i) L1 L2 →
115                         ∨∨ |L1| ≤ i ∧ |L2| ≤ i
116                          | yinj i < l
117                          | ∃∃I,K1,K2,V1,V2. ⬇[i] L1 ≡ K1.ⓑ{I}V1 &
118                                             ⬇[i] L2 ≡ K2.ⓑ{I}V2 &
119                                             llpx_sn R (yinj 0) V1 K1 K2 &
120                                             R K1 V1 V2 & l ≤ yinj i.
121 /2 width=3 by llpx_sn_fwd_lref_aux/ qed-.
122
123 lemma llpx_sn_fwd_bind_sn: ∀R,a,I,L1,L2,V,T,l. llpx_sn R l (ⓑ{a,I}V.T) L1 L2 →
124                            llpx_sn R l V L1 L2.
125 #R #a #I #L1 #L2 #V #T #l #H elim (llpx_sn_inv_bind … H) -H //
126 qed-.
127
128 lemma llpx_sn_fwd_bind_dx: ∀R,a,I,L1,L2,V,T,l. llpx_sn R l (ⓑ{a,I}V.T) L1 L2 →
129                            llpx_sn R (⫯l) T (L1.ⓑ{I}V) (L2.ⓑ{I}V).
130 #R #a #I #L1 #L2 #V #T #l #H elim (llpx_sn_inv_bind … H) -H //
131 qed-.
132
133 lemma llpx_sn_fwd_flat_sn: ∀R,I,L1,L2,V,T,l. llpx_sn R l (ⓕ{I}V.T) L1 L2 →
134                            llpx_sn R l V L1 L2.
135 #R #I #L1 #L2 #V #T #l #H elim (llpx_sn_inv_flat … H) -H //
136 qed-.
137
138 lemma llpx_sn_fwd_flat_dx: ∀R,I,L1,L2,V,T,l. llpx_sn R l (ⓕ{I}V.T) L1 L2 →
139                            llpx_sn R l T L1 L2.
140 #R #I #L1 #L2 #V #T #l #H elim (llpx_sn_inv_flat … H) -H //
141 qed-.
142
143 lemma llpx_sn_fwd_pair_sn: ∀R,I,L1,L2,V,T,l. llpx_sn R l (②{I}V.T) L1 L2 →
144                            llpx_sn R l V L1 L2.
145 #R * /2 width=4 by llpx_sn_fwd_flat_sn, llpx_sn_fwd_bind_sn/
146 qed-.
147
148 (* Basic properties *********************************************************)
149
150 lemma llpx_sn_refl: ∀R. (∀L. reflexive … (R L)) → ∀T,L,l. llpx_sn R l T L L.
151 #R #HR #T #L @(f2_ind … rfw … L T) -L -T
152 #x #IH #L * * /3 width=1 by llpx_sn_sort, llpx_sn_gref, llpx_sn_bind, llpx_sn_flat/
153 #i #Hx elim (lt_or_ge i (|L|)) /2 width=1 by llpx_sn_free/
154 #HiL #l elim (ylt_split i l) /2 width=1 by llpx_sn_skip/
155 elim (drop_O1_lt … HiL) -HiL destruct /4 width=9 by llpx_sn_lref, drop_fwd_rfw/
156 qed-.
157
158 lemma llpx_sn_Y: ∀R,T,L1,L2. |L1| = |L2| → llpx_sn R (∞) T L1 L2.
159 #R #T #L1 @(f2_ind … rfw … L1 T) -L1 -T
160 #x #IH #L1 * * /3 width=1 by llpx_sn_sort, llpx_sn_skip, llpx_sn_gref, llpx_sn_flat/
161 #a #I #V1 #T1 #Hx #L2 #HL12
162 @llpx_sn_bind /2 width=1 by/ (**) (* explicit constructor *)
163 @IH -IH // normalize /2 width=1 by eq_f2/
164 qed-.
165
166 lemma llpx_sn_ge_up: ∀R,L1,L2,U,lt. llpx_sn R lt U L1 L2 → ∀T,l,m. ⬆[l, m] T ≡ U →
167                      lt ≤ l + m → llpx_sn R l U L1 L2.
168 #R #L1 #L2 #U #lt #H elim H -L1 -L2 -U -lt
169 [ #L1 #L2 #lt #k #HL12 #X #l #m #H #_ >(lift_inv_sort2 … H) -H /2 width=1 by llpx_sn_sort/
170 | #L1 #L2 #lt #i #HL12 #Hilt #X #l #m #H #Hltlm
171   elim (lift_inv_lref2 … H) -H * #Hil #H destruct /3 width=1 by llpx_sn_skip, ylt_inj/ -HL12
172   elim (ylt_yle_false … Hilt) -Hilt
173   @(yle_trans … Hltlm) /2 width=1 by yle_inj/ (**) (* full auto too slow 11s *)
174 | #I #L1 #L2 #K1 #K2 #W1 #W2 #lt #i #Hlti #HLK1 #HLK2 #HW1 #HW12 #_ #X #l #m #H #_
175   elim (lift_inv_lref2 … H) -H * #Hil #H destruct
176   [ lapply (llpx_sn_fwd_length … HW1) -HW1 #HK12
177     lapply (drop_fwd_length … HLK1) lapply (drop_fwd_length … HLK2)
178     normalize in ⊢ (%→%→?); -I -W1 -W2 -lt /3 width=1 by llpx_sn_skip, ylt_inj/
179   | /4 width=9 by llpx_sn_lref, yle_inj, le_plus_b/
180   ]
181 | /2 width=1 by llpx_sn_free/
182 | #L1 #L2 #lt #p #HL12 #X #l #m #H #_ >(lift_inv_gref2 … H) -H /2 width=1 by llpx_sn_gref/
183 | #a #I #L1 #L2 #W #U #lt #_ #_ #IHV #IHT #X #l #m #H #Hltlm destruct
184   elim (lift_inv_bind2 … H) -H #V #T #HVW >commutative_plus #HTU #H destruct 
185   @(llpx_sn_bind) /2 width=4 by/ (**) (* full auto fails *)
186   @(IHT … HTU) /2 width=1 by yle_succ/
187 | #I #L1 #L2 #W #U #lt #_ #_ #IHV #IHT #X #l #m #H #Hltlm destruct
188   elim (lift_inv_flat2 … H) -H #HVW #HTU #H destruct
189   /3 width=4 by llpx_sn_flat/
190 ]
191 qed-.
192
193 (**) (* the minor premise comes first *)
194 lemma llpx_sn_ge: ∀R,L1,L2,T,l1,l2. l1 ≤ l2 →
195                   llpx_sn R l1 T L1 L2 → llpx_sn R l2 T L1 L2.
196 #R #L1 #L2 #T #l1 #l2 * -l1 -l2 (**) (* destructed yle *)
197 /3 width=6 by llpx_sn_ge_up, llpx_sn_Y, llpx_sn_fwd_length, yle_inj/
198 qed-.
199
200 lemma llpx_sn_bind_O: ∀R,a,I,L1,L2,V,T. llpx_sn R 0 V L1 L2 →
201                       llpx_sn R 0 T (L1.ⓑ{I}V) (L2.ⓑ{I}V) →
202                       llpx_sn R 0 (ⓑ{a,I}V.T) L1 L2.
203 /3 width=3 by llpx_sn_ge, llpx_sn_bind/ qed-.
204
205 lemma llpx_sn_co: ∀R1,R2. (∀L,T1,T2. R1 L T1 T2 → R2 L T1 T2) →
206                   ∀L1,L2,T,l. llpx_sn R1 l T L1 L2 → llpx_sn R2 l T L1 L2.
207 #R1 #R2 #HR12 #L1 #L2 #T #l #H elim H -L1 -L2 -T -l
208 /3 width=9 by llpx_sn_sort, llpx_sn_skip, llpx_sn_lref, llpx_sn_free, llpx_sn_gref, llpx_sn_bind, llpx_sn_flat/
209 qed-.