]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2A/multiple/llpx_sn.ma
milestone update in ground_2 and basic_2A
[helm.git] / matita / matita / contribs / lambdadelta / basic_2A / multiple / llpx_sn.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/xoa/ex_5_5.ma".
16 include "ground_2/ynat/ynat_plus.ma".
17 include "basic_2A/substitution/drop.ma".
18
19 (* LAZY SN POINTWISE EXTENSION OF A CONTEXT-SENSITIVE REALTION FOR TERMS ****)
20
21 inductive llpx_sn (R:relation3 lenv term term): relation4 ynat term lenv lenv ≝
22 | llpx_sn_sort: ∀L1,L2,l,k. |L1| = |L2| → llpx_sn R l (⋆k) L1 L2
23 | llpx_sn_skip: ∀L1,L2,l,i. |L1| = |L2| → yinj i < l → llpx_sn R l (#i) L1 L2
24 | llpx_sn_lref: ∀I,L1,L2,K1,K2,V1,V2,l,i. l ≤ yinj i →
25                 ⬇[i] L1 ≡ K1.ⓑ{I}V1 → ⬇[i] L2 ≡ K2.ⓑ{I}V2 →
26                 llpx_sn R (yinj 0) V1 K1 K2 → R K1 V1 V2 → llpx_sn R l (#i) L1 L2
27 | llpx_sn_free: ∀L1,L2,l,i. |L1| ≤ i → |L2| ≤ i → |L1| = |L2| → llpx_sn R l (#i) L1 L2
28 | llpx_sn_gref: ∀L1,L2,l,p. |L1| = |L2| → llpx_sn R l (§p) L1 L2
29 | llpx_sn_bind: ∀a,I,L1,L2,V,T,l.
30                 llpx_sn R l V L1 L2 → llpx_sn R (↑l) T (L1.ⓑ{I}V) (L2.ⓑ{I}V) →
31                 llpx_sn R l (ⓑ{a,I}V.T) L1 L2
32 | llpx_sn_flat: ∀I,L1,L2,V,T,l.
33                 llpx_sn R l V L1 L2 → llpx_sn R l T L1 L2 → llpx_sn R l (ⓕ{I}V.T) L1 L2
34 .
35
36 (* Basic inversion lemmas ***************************************************)
37
38 fact llpx_sn_inv_bind_aux: ∀R,L1,L2,X,l. llpx_sn R l X L1 L2 →
39                            ∀a,I,V,T. X = ⓑ{a,I}V.T →
40                            llpx_sn R l V L1 L2 ∧ llpx_sn R (↑l) T (L1.ⓑ{I}V) (L2.ⓑ{I}V).
41 #R #L1 #L2 #X #l * -L1 -L2 -X -l
42 [ #L1 #L2 #l #k #_ #b #J #W #U #H destruct
43 | #L1 #L2 #l #i #_ #_ #b #J #W #U #H destruct
44 | #I #L1 #L2 #K1 #K2 #V1 #V2 #l #i #_ #_ #_ #_ #_ #b #J #W #U #H destruct
45 | #L1 #L2 #l #i #_ #_ #_ #b #J #W #U #H destruct
46 | #L1 #L2 #l #p #_ #b #J #W #U #H destruct
47 | #a #I #L1 #L2 #V #T #l #HV #HT #b #J #W #U #H destruct /2 width=1 by conj/
48 | #I #L1 #L2 #V #T #l #_ #_ #b #J #W #U #H destruct
49 ]
50 qed-.
51
52 lemma llpx_sn_inv_bind: ∀R,a,I,L1,L2,V,T,l. llpx_sn R l (ⓑ{a,I}V.T) L1 L2 →
53                         llpx_sn R l V L1 L2 ∧ llpx_sn R (↑l) T (L1.ⓑ{I}V) (L2.ⓑ{I}V).
54 /2 width=4 by llpx_sn_inv_bind_aux/ qed-.
55
56 fact llpx_sn_inv_flat_aux: ∀R,L1,L2,X,l. llpx_sn R l X L1 L2 →
57                            ∀I,V,T. X = ⓕ{I}V.T →
58                            llpx_sn R l V L1 L2 ∧ llpx_sn R l T L1 L2.
59 #R #L1 #L2 #X #l * -L1 -L2 -X -l
60 [ #L1 #L2 #l #k #_ #J #W #U #H destruct
61 | #L1 #L2 #l #i #_ #_ #J #W #U #H destruct
62 | #I #L1 #L2 #K1 #K2 #V1 #V2 #l #i #_ #_ #_ #_ #_ #J #W #U #H destruct
63 | #L1 #L2 #l #i #_ #_ #_ #J #W #U #H destruct
64 | #L1 #L2 #l #p #_ #J #W #U #H destruct
65 | #a #I #L1 #L2 #V #T #l #_ #_ #J #W #U #H destruct
66 | #I #L1 #L2 #V #T #l #HV #HT #J #W #U #H destruct /2 width=1 by conj/
67 ]
68 qed-.
69
70 lemma llpx_sn_inv_flat: ∀R,I,L1,L2,V,T,l. llpx_sn R l (ⓕ{I}V.T) L1 L2 →
71                         llpx_sn R l V L1 L2 ∧ llpx_sn R l T L1 L2.
72 /2 width=4 by llpx_sn_inv_flat_aux/ qed-.
73
74 (* Basic forward lemmas *****************************************************)
75
76 lemma llpx_sn_fwd_length: ∀R,L1,L2,T,l. llpx_sn R l T L1 L2 → |L1| = |L2|.
77 #R #L1 #L2 #T #l #H elim H -L1 -L2 -T -l //
78 #I #L1 #L2 #K1 #K2 #V1 #V2 #l #i #_ #HLK1 #HLK2 #_ #_ #HK12
79 lapply (drop_fwd_length … HLK1) -HLK1
80 lapply (drop_fwd_length … HLK2) -HLK2
81 normalize //
82 qed-.
83
84 lemma llpx_sn_fwd_drop_sn: ∀R,L1,L2,T,l. llpx_sn R l T L1 L2 →
85                             ∀K1,i. ⬇[i] L1 ≡ K1 → ∃K2. ⬇[i] L2 ≡ K2.
86 #R #L1 #L2 #T #l #H #K1 #i #HLK1 lapply (llpx_sn_fwd_length … H) -H
87 #HL12 lapply (drop_fwd_length_le2 … HLK1) -HLK1 /2 width=1 by drop_O1_le/
88 qed-.
89
90 lemma llpx_sn_fwd_drop_dx: ∀R,L1,L2,T,l. llpx_sn R l T L1 L2 →
91                             ∀K2,i. ⬇[i] L2 ≡ K2 → ∃K1. ⬇[i] L1 ≡ K1.
92 #R #L1 #L2 #T #l #H #K2 #i #HLK2 lapply (llpx_sn_fwd_length … H) -H
93 #HL12 lapply (drop_fwd_length_le2 … HLK2) -HLK2 /2 width=1 by drop_O1_le/
94 qed-.
95
96 fact llpx_sn_fwd_lref_aux: ∀R,L1,L2,X,l. llpx_sn R l X L1 L2 → ∀i. X = #i →
97                            ∨∨ |L1| ≤ i ∧ |L2| ≤ i
98                             | yinj i < l
99                             | ∃∃I,K1,K2,V1,V2. ⬇[i] L1 ≡ K1.ⓑ{I}V1 &
100                                                ⬇[i] L2 ≡ K2.ⓑ{I}V2 &
101                                                llpx_sn R (yinj 0) V1 K1 K2 &
102                                                R K1 V1 V2 & l ≤ yinj i.
103 #R #L1 #L2 #X #l * -L1 -L2 -X -l
104 [ #L1 #L2 #l #k #_ #j #H destruct
105 | #L1 #L2 #l #i #_ #Hil #j #H destruct /2 width=1 by or3_intro1/
106 | #I #L1 #L2 #K1 #K2 #V1 #V2 #l #i #Hli #HLK1 #HLK2 #HK12 #HV12 #j #H destruct
107   /3 width=9 by or3_intro2, ex5_5_intro/
108 | #L1 #L2 #l #i #HL1 #HL2 #_ #j #H destruct /3 width=1 by or3_intro0, conj/
109 | #L1 #L2 #l #p #_ #j #H destruct
110 | #a #I #L1 #L2 #V #T #l #_ #_ #j #H destruct
111 | #I #L1 #L2 #V #T #l #_ #_ #j #H destruct
112 ]
113 qed-.
114
115 lemma llpx_sn_fwd_lref: ∀R,L1,L2,l,i. llpx_sn R l (#i) L1 L2 →
116                         ∨∨ |L1| ≤ i ∧ |L2| ≤ i
117                          | yinj i < l
118                          | ∃∃I,K1,K2,V1,V2. ⬇[i] L1 ≡ K1.ⓑ{I}V1 &
119                                             ⬇[i] L2 ≡ K2.ⓑ{I}V2 &
120                                             llpx_sn R (yinj 0) V1 K1 K2 &
121                                             R K1 V1 V2 & l ≤ yinj i.
122 /2 width=3 by llpx_sn_fwd_lref_aux/ qed-.
123
124 lemma llpx_sn_fwd_bind_sn: ∀R,a,I,L1,L2,V,T,l. llpx_sn R l (ⓑ{a,I}V.T) L1 L2 →
125                            llpx_sn R l V L1 L2.
126 #R #a #I #L1 #L2 #V #T #l #H elim (llpx_sn_inv_bind … H) -H //
127 qed-.
128
129 lemma llpx_sn_fwd_bind_dx: ∀R,a,I,L1,L2,V,T,l. llpx_sn R l (ⓑ{a,I}V.T) L1 L2 →
130                            llpx_sn R (↑l) T (L1.ⓑ{I}V) (L2.ⓑ{I}V).
131 #R #a #I #L1 #L2 #V #T #l #H elim (llpx_sn_inv_bind … H) -H //
132 qed-.
133
134 lemma llpx_sn_fwd_flat_sn: ∀R,I,L1,L2,V,T,l. llpx_sn R l (ⓕ{I}V.T) L1 L2 →
135                            llpx_sn R l V L1 L2.
136 #R #I #L1 #L2 #V #T #l #H elim (llpx_sn_inv_flat … H) -H //
137 qed-.
138
139 lemma llpx_sn_fwd_flat_dx: ∀R,I,L1,L2,V,T,l. llpx_sn R l (ⓕ{I}V.T) L1 L2 →
140                            llpx_sn R l T L1 L2.
141 #R #I #L1 #L2 #V #T #l #H elim (llpx_sn_inv_flat … H) -H //
142 qed-.
143
144 lemma llpx_sn_fwd_pair_sn: ∀R,I,L1,L2,V,T,l. llpx_sn R l (②{I}V.T) L1 L2 →
145                            llpx_sn R l V L1 L2.
146 #R * /2 width=4 by llpx_sn_fwd_flat_sn, llpx_sn_fwd_bind_sn/
147 qed-.
148
149 (* Basic properties *********************************************************)
150
151 lemma llpx_sn_refl: ∀R. (∀L. reflexive … (R L)) → ∀T,L,l. llpx_sn R l T L L.
152 #R #HR #T #L @(f2_ind … rfw … L T) -L -T
153 #x #IH #L * * /3 width=1 by llpx_sn_sort, llpx_sn_gref, llpx_sn_bind, llpx_sn_flat/
154 #i #Hx elim (lt_or_ge i (|L|)) /2 width=1 by llpx_sn_free/
155 #HiL #l elim (ylt_split i l) /2 width=1 by llpx_sn_skip/
156 elim (drop_O1_lt … HiL) -HiL destruct /4 width=9 by llpx_sn_lref, drop_fwd_rfw/
157 qed-.
158
159 lemma llpx_sn_Y: ∀R,T,L1,L2. |L1| = |L2| → llpx_sn R (∞) T L1 L2.
160 #R #T #L1 @(f2_ind … rfw … L1 T) -L1 -T
161 #x #IH #L1 * * /3 width=1 by llpx_sn_sort, llpx_sn_skip, llpx_sn_gref, llpx_sn_flat/
162 #a #I #V1 #T1 #Hx #L2 #HL12
163 @llpx_sn_bind /2 width=1 by/ (**) (* explicit constructor *)
164 @IH -IH // normalize /2 width=1 by eq_f2/
165 qed-.
166
167 lemma llpx_sn_ge_up: ∀R,L1,L2,U,lt. llpx_sn R lt U L1 L2 → ∀T,l,m. ⬆[l, m] T ≡ U →
168                      lt ≤ l + m → llpx_sn R l U L1 L2.
169 #R #L1 #L2 #U #lt #H elim H -L1 -L2 -U -lt
170 [ #L1 #L2 #lt #k #HL12 #X #l #m #H #_ >(lift_inv_sort2 … H) -H /2 width=1 by llpx_sn_sort/
171 | #L1 #L2 #lt #i #HL12 #Hilt #X #l #m #H #Hltlm
172   elim (lift_inv_lref2 … H) -H * #Hil #H destruct /3 width=1 by llpx_sn_skip, ylt_inj/ -HL12
173   elim (ylt_yle_false … Hilt) -Hilt
174   @(yle_trans … Hltlm) /2 width=1 by yle_inj/ (**) (* full auto too slow 11s *)
175 | #I #L1 #L2 #K1 #K2 #W1 #W2 #lt #i #Hlti #HLK1 #HLK2 #HW1 #HW12 #_ #X #l #m #H #_
176   elim (lift_inv_lref2 … H) -H * #Hil #H destruct
177   [ lapply (llpx_sn_fwd_length … HW1) -HW1 #HK12
178     lapply (drop_fwd_length … HLK1) lapply (drop_fwd_length … HLK2)
179     normalize in ⊢ (%→%→?); -I -W1 -W2 -lt /3 width=1 by llpx_sn_skip, ylt_inj/
180   | /4 width=9 by llpx_sn_lref, yle_inj, le_plus_b/
181   ]
182 | /2 width=1 by llpx_sn_free/
183 | #L1 #L2 #lt #p #HL12 #X #l #m #H #_ >(lift_inv_gref2 … H) -H /2 width=1 by llpx_sn_gref/
184 | #a #I #L1 #L2 #W #U #lt #_ #_ #IHV #IHT #X #l #m #H #Hltlm destruct
185   elim (lift_inv_bind2 … H) -H #V #T #HVW >commutative_plus #HTU #H destruct 
186   @(llpx_sn_bind) /2 width=4 by/ (**) (* full auto fails *)
187   @(IHT … HTU) /2 width=1 by yle_succ/
188 | #I #L1 #L2 #W #U #lt #_ #_ #IHV #IHT #X #l #m #H #Hltlm destruct
189   elim (lift_inv_flat2 … H) -H #HVW #HTU #H destruct
190   /3 width=4 by llpx_sn_flat/
191 ]
192 qed-.
193
194 (**) (* the minor premise comes first *)
195 lemma llpx_sn_ge: ∀R,L1,L2,T,l1,l2. l1 ≤ l2 →
196                   llpx_sn R l1 T L1 L2 → llpx_sn R l2 T L1 L2.
197 #R #L1 #L2 #T #l1 #l2 * -l1 -l2 (**) (* destructed yle *)
198 /3 width=6 by llpx_sn_ge_up, llpx_sn_Y, llpx_sn_fwd_length, yle_inj/
199 qed-.
200
201 lemma llpx_sn_bind_O: ∀R,a,I,L1,L2,V,T. llpx_sn R 0 V L1 L2 →
202                       llpx_sn R 0 T (L1.ⓑ{I}V) (L2.ⓑ{I}V) →
203                       llpx_sn R 0 (ⓑ{a,I}V.T) L1 L2.
204 /3 width=3 by llpx_sn_ge, llpx_sn_bind/ qed-.
205
206 lemma llpx_sn_co: ∀R1,R2. (∀L,T1,T2. R1 L T1 T2 → R2 L T1 T2) →
207                   ∀L1,L2,T,l. llpx_sn R1 l T L1 L2 → llpx_sn R2 l T L1 L2.
208 #R1 #R2 #HR12 #L1 #L2 #T #l #H elim H -L1 -L2 -T -l
209 /3 width=9 by llpx_sn_sort, llpx_sn_skip, llpx_sn_lref, llpx_sn_free, llpx_sn_gref, llpx_sn_bind, llpx_sn_flat/
210 qed-.