]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2A/multiple/llpx_sn_alt_rec.ma
milestone update in ground_2 and basic_2A
[helm.git] / matita / matita / contribs / lambdadelta / basic_2A / multiple / llpx_sn_alt_rec.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/xoa/and_4.ma".
16 include "basic_2A/substitution/lift_neg.ma".
17 include "basic_2A/substitution/drop_drop.ma".
18 include "basic_2A/multiple/llpx_sn.ma".
19
20 (* LAZY SN POINTWISE EXTENSION OF A CONTEXT-SENSITIVE REALTION FOR TERMS ****)
21
22 (* alternative definition of llpx_sn (recursive) *)
23 inductive llpx_sn_alt_r (R:relation3 lenv term term): relation4 ynat term lenv lenv ≝
24 | llpx_sn_alt_r_intro: ∀L1,L2,T,l.
25                        (∀I1,I2,K1,K2,V1,V2,i. l ≤ yinj i → (∀U. ⬆[i, 1] U ≡ T → ⊥) →
26                           ⬇[i] L1 ≡ K1.ⓑ{I1}V1 → ⬇[i] L2 ≡ K2.ⓑ{I2}V2 → I1 = I2 ∧ R K1 V1 V2
27                        ) →
28                        (∀I1,I2,K1,K2,V1,V2,i. l ≤ yinj i → (∀U. ⬆[i, 1] U ≡ T → ⊥) →
29                           ⬇[i] L1 ≡ K1.ⓑ{I1}V1 → ⬇[i] L2 ≡ K2.ⓑ{I2}V2 → llpx_sn_alt_r R 0 V1 K1 K2
30                        ) → |L1| = |L2| → llpx_sn_alt_r R l T L1 L2
31 .
32
33 (* Compact definition of llpx_sn_alt_r **************************************)
34
35 lemma llpx_sn_alt_r_intro_alt: ∀R,L1,L2,T,l. |L1| = |L2| →
36                                (∀I1,I2,K1,K2,V1,V2,i. l ≤ yinj i → (∀U. ⬆[i, 1] U ≡ T → ⊥) →
37                                  ⬇[i] L1 ≡ K1.ⓑ{I1}V1 → ⬇[i] L2 ≡ K2.ⓑ{I2}V2 →
38                                  ∧∧ I1 = I2 & R K1 V1 V2 & llpx_sn_alt_r R 0 V1 K1 K2
39                                ) → llpx_sn_alt_r R l T L1 L2.
40 #R #L1 #L2 #T #l #HL12 #IH @llpx_sn_alt_r_intro // -HL12
41 #I1 #I2 #K1 #K2 #V1 #V2 #i #Hil #HnT #HLK1 #HLK2
42 elim (IH … HnT HLK1 HLK2) -IH -HnT -HLK1 -HLK2 /2 width=1 by conj/
43 qed.
44
45 lemma llpx_sn_alt_r_ind_alt: ∀R. ∀S:relation4 ynat term lenv lenv.
46                              (∀L1,L2,T,l. |L1| = |L2| → (
47                                 ∀I1,I2,K1,K2,V1,V2,i. l ≤ yinj i → (∀U. ⬆[i, 1] U ≡ T → ⊥) →
48                                 ⬇[i] L1 ≡ K1.ⓑ{I1}V1 → ⬇[i] L2 ≡ K2.ⓑ{I2}V2 →
49                                 ∧∧ I1 = I2 & R K1 V1 V2 & llpx_sn_alt_r R 0 V1 K1 K2 & S 0 V1 K1 K2
50                              ) → S l T L1 L2) →
51                              ∀L1,L2,T,l. llpx_sn_alt_r R l T L1 L2 → S l T L1 L2.
52 #R #S #IH #L1 #L2 #T #l #H elim H -L1 -L2 -T -l
53 #L1 #L2 #T #l #H1 #H2 #HL12 #IH2 @IH -IH // -HL12
54 #I1 #I2 #K1 #K2 #V1 #V2 #i #Hil #HnT #HLK1 #HLK2
55 elim (H1 … HnT HLK1 HLK2) -H1 /4 width=8 by and4_intro/
56 qed-.
57
58 lemma llpx_sn_alt_r_inv_alt: ∀R,L1,L2,T,l. llpx_sn_alt_r R l T L1 L2 →
59                              |L1| = |L2| ∧
60                              ∀I1,I2,K1,K2,V1,V2,i. l ≤ yinj i → (∀U. ⬆[i, 1] U ≡ T → ⊥) →
61                                ⬇[i] L1 ≡ K1.ⓑ{I1}V1 → ⬇[i] L2 ≡ K2.ⓑ{I2}V2 →
62                              ∧∧ I1 = I2 & R K1 V1 V2 & llpx_sn_alt_r R 0 V1 K1 K2.
63 #R #L1 #L2 #T #l #H @(llpx_sn_alt_r_ind_alt … H) -L1 -L2 -T -l
64 #L1 #L2 #T #l #HL12 #IH @conj // -HL12
65 #I1 #I2 #K1 #K2 #V1 #V2 #i #Hil #HnT #HLK1 #HLK2
66 elim (IH … HnT HLK1 HLK2) -IH -HnT -HLK1 -HLK2 /2 width=1 by and3_intro/
67 qed-.
68
69 (* Basic inversion lemmas ***************************************************)
70
71 lemma llpx_sn_alt_r_inv_flat: ∀R,I,L1,L2,V,T,l. llpx_sn_alt_r R l (ⓕ{I}V.T) L1 L2 →
72                               llpx_sn_alt_r R l V L1 L2 ∧ llpx_sn_alt_r R l T L1 L2.
73 #R #I #L1 #L2 #V #T #l #H elim (llpx_sn_alt_r_inv_alt … H) -H
74 #HL12 #IH @conj @llpx_sn_alt_r_intro_alt // -HL12
75 #I1 #I2 #K1 #K2 #V1 #V2 #i #Hli #H #HLK1 #HLK2
76 elim (IH … HLK1 HLK2) -IH -HLK1 -HLK2 //
77 /3 width=8 by nlift_flat_sn, nlift_flat_dx, and3_intro/
78 qed-.
79
80 lemma llpx_sn_alt_r_inv_bind: ∀R,a,I,L1,L2,V,T,l. llpx_sn_alt_r R l (ⓑ{a,I}V.T) L1 L2 →
81                               llpx_sn_alt_r R l V L1 L2 ∧ llpx_sn_alt_r R (↑l) T (L1.ⓑ{I}V) (L2.ⓑ{I}V).
82 #R #a #I #L1 #L2 #V #T #l #H elim (llpx_sn_alt_r_inv_alt … H) -H
83 #HL12 #IH @conj @llpx_sn_alt_r_intro_alt [1,3: normalize // ] -HL12
84 #I1 #I2 #K1 #K2 #V1 #V2 #i #Hli #H #HLK1 #HLK2
85 [ elim (IH … HLK1 HLK2) -IH -HLK1 -HLK2
86   /3 width=9 by nlift_bind_sn, and3_intro/
87 | lapply (yle_inv_succ_sn_lt … Hli) -Hli * #Hli #Hi
88   lapply (drop_inv_drop1_lt … HLK1 ?) -HLK1 /2 width=1 by ylt_inv_inj/ #HLK1
89   lapply (drop_inv_drop1_lt … HLK2 ?) -HLK2 /2 width=1 by ylt_inv_inj/ #HLK2
90   elim (IH … HLK1 HLK2) -IH -HLK1 -HLK2 /2 width=1 by yle_plus_dx1_trans, and3_intro/
91   @nlift_bind_dx <plus_minus_m_m /2 width=2 by ylt_inv_inj/
92 ]
93 qed-.
94
95 (* Basic forward lemmas *****************************************************)
96
97 lemma llpx_sn_alt_r_fwd_length: ∀R,L1,L2,T,l. llpx_sn_alt_r R l T L1 L2 → |L1| = |L2|.
98 #R #L1 #L2 #T #l #H elim (llpx_sn_alt_r_inv_alt … H) -H //
99 qed-.
100
101 lemma llpx_sn_alt_r_fwd_lref: ∀R,L1,L2,l,i. llpx_sn_alt_r R l (#i) L1 L2 →
102                               ∨∨ |L1| ≤ i ∧ |L2| ≤ i
103                                | yinj i < l
104                                | ∃∃I,K1,K2,V1,V2. ⬇[i] L1 ≡ K1.ⓑ{I}V1 &
105                                                   ⬇[i] L2 ≡ K2.ⓑ{I}V2 &
106                                                   llpx_sn_alt_r R (yinj 0) V1 K1 K2 &
107                                                   R K1 V1 V2 & l ≤ yinj i.
108 #R #L1 #L2 #l #i #H elim (llpx_sn_alt_r_inv_alt … H) -H
109 #HL12 #IH elim (lt_or_ge i (|L1|)) /3 width=1 by or3_intro0, conj/
110 elim (ylt_split i l) /3 width=1 by or3_intro1/
111 #Hli #HL1 elim (drop_O1_lt (Ⓕ) … HL1)
112 #I1 #K1 #V1 #HLK1 elim (drop_O1_lt (Ⓕ) L2 i) //
113 #I2 #K2 #V2 #HLK2 elim (IH … HLK1 HLK2) -IH
114 /3 width=9 by nlift_lref_be_SO, or3_intro2, ex5_5_intro/
115 qed-.
116
117 (* Basic properties *********************************************************)
118
119 lemma llpx_sn_alt_r_sort: ∀R,L1,L2,l,k. |L1| = |L2| → llpx_sn_alt_r R l (⋆k) L1 L2.
120 #R #L1 #L2 #l #k #HL12 @llpx_sn_alt_r_intro_alt // -HL12
121 #I1 #I2 #K1 #K2 #V1 #V2 #i #_ #H elim (H (⋆k)) //
122 qed.
123
124 lemma llpx_sn_alt_r_gref: ∀R,L1,L2,l,p. |L1| = |L2| → llpx_sn_alt_r R l (§p) L1 L2.
125 #R #L1 #L2 #l #p #HL12 @llpx_sn_alt_r_intro_alt // -HL12
126 #I1 #I2 #K1 #K2 #V1 #V2 #i #_ #H elim (H (§p)) //
127 qed.
128
129 lemma llpx_sn_alt_r_skip: ∀R,L1,L2,l,i. |L1| = |L2| → yinj i < l → llpx_sn_alt_r R l (#i) L1 L2.
130 #R #L1 #L2 #l #i #HL12 #Hil @llpx_sn_alt_r_intro_alt // -HL12
131 #I1 #I2 #K1 #K2 #V1 #V2 #j #Hlj #H elim (H (#i)) -H
132 /4 width=3 by lift_lref_lt, ylt_yle_trans, ylt_inv_inj/
133 qed.
134
135 lemma llpx_sn_alt_r_free: ∀R,L1,L2,l,i. |L1| ≤ i → |L2| ≤ i → |L1| = |L2| →
136                           llpx_sn_alt_r R l (#i) L1 L2.
137 #R #L1 #L2 #l #i #HL1 #_ #HL12 @llpx_sn_alt_r_intro_alt // -HL12
138 #I1 #I2 #K1 #K2 #V1 #V2 #j #_ #H #HLK1 elim (H (#(i-1))) -H
139 lapply (drop_fwd_length_lt2 … HLK1) -HLK1
140 /3 width=3 by lift_lref_ge_minus, lt_to_le_to_lt/
141 qed.
142
143 lemma llpx_sn_alt_r_lref: ∀R,I,L1,L2,K1,K2,V1,V2,l,i. l ≤ yinj i →
144                           ⬇[i] L1 ≡ K1.ⓑ{I}V1 → ⬇[i] L2 ≡ K2.ⓑ{I}V2 →
145                           llpx_sn_alt_r R 0 V1 K1 K2 → R K1 V1 V2 →
146                           llpx_sn_alt_r R l (#i) L1 L2.
147 #R #I #L1 #L2 #K1 #K2 #V1 #V2 #l #i #Hli #HLK1 #HLK2 #HK12 #HV12 @llpx_sn_alt_r_intro_alt
148 [ lapply (llpx_sn_alt_r_fwd_length … HK12) -HK12 #HK12
149   @(drop_fwd_length_eq2 … HLK1 HLK2) normalize //
150 | #Z1 #Z2 #Y1 #Y2 #X1 #X2 #j #Hlj #H #HLY1 #HLY2
151   elim (lt_or_eq_or_gt i j) #Hij destruct
152   [ elim (H (#i)) -H /2 width=1 by lift_lref_lt/
153   | lapply (drop_mono … HLY1 … HLK1) -HLY1 -HLK1 #H destruct
154     lapply (drop_mono … HLY2 … HLK2) -HLY2 -HLK2 #H destruct /2 width=1 by and3_intro/
155   | elim (H (#(i-1))) -H /2 width=1 by lift_lref_ge_minus/
156   ]
157 ]
158 qed.
159
160 lemma llpx_sn_alt_r_flat: ∀R,I,L1,L2,V,T,l.
161                           llpx_sn_alt_r R l V L1 L2 → llpx_sn_alt_r R l T L1 L2 →
162                           llpx_sn_alt_r R l (ⓕ{I}V.T) L1 L2.
163 #R #I #L1 #L2 #V #T #l #HV #HT
164 elim (llpx_sn_alt_r_inv_alt … HV) -HV #HL12 #IHV
165 elim (llpx_sn_alt_r_inv_alt … HT) -HT #_ #IHT
166 @llpx_sn_alt_r_intro_alt // -HL12
167 #I1 #I2 #K1 #K2 #V1 #V2 #i #Hli #HnVT #HLK1 #HLK2
168 elim (nlift_inv_flat … HnVT) -HnVT #H
169 [ elim (IHV … HLK1 … HLK2) -IHV /2 width=2 by and3_intro/
170 | elim (IHT … HLK1 … HLK2) -IHT /3 width=2 by and3_intro/
171 ]
172 qed.
173
174 lemma llpx_sn_alt_r_bind: ∀R,a,I,L1,L2,V,T,l.
175                           llpx_sn_alt_r R l V L1 L2 →
176                           llpx_sn_alt_r R (↑l) T (L1.ⓑ{I}V) (L2.ⓑ{I}V) →
177                           llpx_sn_alt_r R l (ⓑ{a,I}V.T) L1 L2.
178 #R #a #I #L1 #L2 #V #T #l #HV #HT
179 elim (llpx_sn_alt_r_inv_alt … HV) -HV #HL12 #IHV
180 elim (llpx_sn_alt_r_inv_alt … HT) -HT #_ #IHT
181 @llpx_sn_alt_r_intro_alt // -HL12
182 #I1 #I2 #K1 #K2 #V1 #V2 #i #Hli #HnVT #HLK1 #HLK2
183 elim (nlift_inv_bind … HnVT) -HnVT #H
184 [ elim (IHV … HLK1 … HLK2) -IHV /2 width=2 by and3_intro/
185 | elim IHT -IHT /2 width=12 by drop_drop, yle_succ, and3_intro/
186 ]
187 qed.
188
189 (* Main properties **********************************************************)
190
191 theorem llpx_sn_lpx_sn_alt_r: ∀R,L1,L2,T,l. llpx_sn R l T L1 L2 → llpx_sn_alt_r R l T L1 L2.
192 #R #L1 #L2 #T #l #H elim H -L1 -L2 -T -l
193 /2 width=9 by llpx_sn_alt_r_sort, llpx_sn_alt_r_gref, llpx_sn_alt_r_skip, llpx_sn_alt_r_free, llpx_sn_alt_r_lref, llpx_sn_alt_r_flat, llpx_sn_alt_r_bind/
194 qed.
195
196 (* Main inversion lemmas ****************************************************)
197
198 theorem llpx_sn_alt_r_inv_lpx_sn: ∀R,T,L1,L2,l. llpx_sn_alt_r R l T L1 L2 → llpx_sn R l T L1 L2.
199 #R #T #L1 @(f2_ind … rfw … L1 T) -L1 -T #x #IH #L1 * *
200 [1,3: /3 width=4 by llpx_sn_alt_r_fwd_length, llpx_sn_gref, llpx_sn_sort/
201 | #i #Hx #L2 #l #H lapply (llpx_sn_alt_r_fwd_length … H)
202   #HL12 elim (llpx_sn_alt_r_fwd_lref … H) -H
203   [ * /2 width=1 by llpx_sn_free/
204   | /2 width=1 by llpx_sn_skip/
205   | * /4 width=9 by llpx_sn_lref, drop_fwd_rfw/
206   ]
207 | #a #I #V #T #Hx #L2 #l #H elim (llpx_sn_alt_r_inv_bind … H) -H
208   /3 width=1 by llpx_sn_bind/
209 | #I #V #T #Hx #L2 #l #H elim (llpx_sn_alt_r_inv_flat … H) -H
210   /3 width=1 by llpx_sn_flat/
211 ]
212 qed-.
213
214 (* Alternative definition of llpx_sn (recursive) ****************************)
215
216 lemma llpx_sn_intro_alt_r: ∀R,L1,L2,T,l. |L1| = |L2| →
217                            (∀I1,I2,K1,K2,V1,V2,i. l ≤ yinj i → (∀U. ⬆[i, 1] U ≡ T → ⊥) →
218                               ⬇[i] L1 ≡ K1.ⓑ{I1}V1 → ⬇[i] L2 ≡ K2.ⓑ{I2}V2 →
219                               ∧∧ I1 = I2 & R K1 V1 V2 & llpx_sn R 0 V1 K1 K2
220                            ) → llpx_sn R l T L1 L2.
221 #R #L1 #L2 #T #l #HL12 #IH @llpx_sn_alt_r_inv_lpx_sn
222 @llpx_sn_alt_r_intro_alt // -HL12
223 #I1 #I2 #K1 #K2 #V1 #V2 #i #Hil #HnT #HLK1 #HLK2
224 elim (IH … HnT HLK1 HLK2) -IH -HnT -HLK1 -HLK2 /3 width=1 by llpx_sn_lpx_sn_alt_r, and3_intro/
225 qed.
226
227 lemma llpx_sn_ind_alt_r: ∀R. ∀S:relation4 ynat term lenv lenv.
228                          (∀L1,L2,T,l. |L1| = |L2| → (
229                             ∀I1,I2,K1,K2,V1,V2,i. l ≤ yinj i → (∀U. ⬆[i, 1] U ≡ T → ⊥) →
230                             ⬇[i] L1 ≡ K1.ⓑ{I1}V1 → ⬇[i] L2 ≡ K2.ⓑ{I2}V2 →
231                             ∧∧ I1 = I2 & R K1 V1 V2 & llpx_sn R 0 V1 K1 K2 & S 0 V1 K1 K2
232                          ) → S l T L1 L2) →
233                          ∀L1,L2,T,l. llpx_sn R l T L1 L2 → S l T L1 L2.
234 #R #S #IH1 #L1 #L2 #T #l #H lapply (llpx_sn_lpx_sn_alt_r … H) -H
235 #H @(llpx_sn_alt_r_ind_alt … H) -L1 -L2 -T -l
236 #L1 #L2 #T #l #HL12 #IH2 @IH1 -IH1 // -HL12
237 #I1 #I2 #K1 #K2 #V1 #V2 #i #Hil #HnT #HLK1 #HLK2
238 elim (IH2 … HnT HLK1 HLK2) -IH2 -HnT -HLK1 -HLK2 /3 width=1 by llpx_sn_alt_r_inv_lpx_sn, and4_intro/
239 qed-.
240
241 lemma llpx_sn_inv_alt_r: ∀R,L1,L2,T,l. llpx_sn R l T L1 L2 →
242                          |L1| = |L2| ∧
243                          ∀I1,I2,K1,K2,V1,V2,i. l ≤ yinj i → (∀U. ⬆[i, 1] U ≡ T → ⊥) →
244                          ⬇[i] L1 ≡ K1.ⓑ{I1}V1 → ⬇[i] L2 ≡ K2.ⓑ{I2}V2 →
245                          ∧∧ I1 = I2 & R K1 V1 V2 & llpx_sn R 0 V1 K1 K2.
246 #R #L1 #L2 #T #l #H lapply (llpx_sn_lpx_sn_alt_r … H) -H
247 #H elim (llpx_sn_alt_r_inv_alt … H) -H
248 #HL12 #IH @conj //
249 #I1 #I2 #K1 #K2 #V1 #V2 #i #Hil #HnT #HLK1 #HLK2
250 elim (IH … HnT HLK1 HLK2) -IH -HnT -HLK1 -HLK2 /3 width=1 by llpx_sn_alt_r_inv_lpx_sn, and3_intro/
251 qed-.