]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2A/multiple/mr2_minus.ma
update in lambdadelta
[helm.git] / matita / matita / contribs / lambdadelta / basic_2A / multiple / mr2_minus.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2A/notation/relations/rminus_3.ma".
16 include "basic_2A/multiple/mr2.ma".
17
18 (* MULTIPLE RELOCATION WITH PAIRS *******************************************)
19
20 inductive minuss: nat → relation (list2 nat nat) ≝
21 | minuss_nil: ∀i. minuss i (◊) (◊)
22 | minuss_lt : ∀cs1,cs2,l,m,i. i < l → minuss i cs1 cs2 →
23               minuss i ({l, m} @ cs1) ({l - i, m} @ cs2)
24 | minuss_ge : ∀cs1,cs2,l,m,i. l ≤ i → minuss (m + i) cs1 cs2 →
25               minuss i ({l, m} @ cs1) cs2
26 .
27
28 interpretation "minus (multiple relocation with pairs)"
29    'RMinus cs1 i cs2 = (minuss i cs1 cs2).
30
31 (* Basic inversion lemmas ***************************************************)
32
33 fact minuss_inv_nil1_aux: ∀cs1,cs2,i. cs1 ▭ i ≡ cs2 → cs1 = ◊ → cs2 = ◊.
34 #cs1 #cs2 #i * -cs1 -cs2 -i
35 [ //
36 | #cs1 #cs2 #l #m #i #_ #_ #H destruct
37 | #cs1 #cs2 #l #m #i #_ #_ #H destruct
38 ]
39 qed-.
40
41 lemma minuss_inv_nil1: ∀cs2,i. ◊ ▭ i ≡ cs2 → cs2 = ◊.
42 /2 width=4 by minuss_inv_nil1_aux/ qed-.
43
44 fact minuss_inv_cons1_aux: ∀cs1,cs2,i. cs1 ▭ i ≡ cs2 →
45                            ∀l,m,cs. cs1 = {l, m} @ cs →
46                            l ≤ i ∧ cs ▭ m + i ≡ cs2 ∨
47                            ∃∃cs0. i < l & cs ▭ i ≡ cs0 &
48                                    cs2 = {l - i, m} @ cs0.
49 #cs1 #cs2 #i * -cs1 -cs2 -i
50 [ #i #l #m #cs #H destruct
51 | #cs1 #cs #l1 #m1 #i1 #Hil1 #Hcs #l2 #m2 #cs2 #H destruct /3 width=3 by ex3_intro, or_intror/
52 | #cs1 #cs #l1 #m1 #i1 #Hli1 #Hcs #l2 #m2 #cs2 #H destruct /3 width=1 by or_introl, conj/
53 ]
54 qed-.
55
56 lemma minuss_inv_cons1: ∀cs1,cs2,l,m,i. {l, m} @ cs1 ▭ i ≡ cs2 →
57                         l ≤ i ∧ cs1 ▭ m + i ≡ cs2 ∨
58                         ∃∃cs. i < l & cs1 ▭ i ≡ cs &
59                                cs2 = {l - i, m} @ cs.
60 /2 width=3 by minuss_inv_cons1_aux/ qed-.
61
62 lemma minuss_inv_cons1_ge: ∀cs1,cs2,l,m,i. {l, m} @ cs1 ▭ i ≡ cs2 →
63                            l ≤ i → cs1 ▭ m + i ≡ cs2.
64 #cs1 #cs2 #l #m #i #H
65 elim (minuss_inv_cons1 … H) -H * // #cs #Hil #_ #_ #Hli
66 lapply (lt_to_le_to_lt … Hil Hli) -Hil -Hli #Hi
67 elim (lt_refl_false … Hi)
68 qed-.
69
70 lemma minuss_inv_cons1_lt: ∀cs1,cs2,l,m,i. {l, m} @ cs1 ▭ i ≡ cs2 →
71                            i < l →
72                            ∃∃cs. cs1 ▭ i ≡ cs & cs2 = {l - i, m} @ cs.
73 #cs1 #cs2 #l #m #i #H elim (minuss_inv_cons1 … H) -H * /2 width=3 by ex2_intro/
74 #Hli #_ #Hil lapply (lt_to_le_to_lt … Hil Hli) -Hil -Hli
75 #Hi elim (lt_refl_false … Hi)
76 qed-.