]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/delayed_updating/substitution/lift_eq.ma
5ab8d7f05a166f99d2679810d119c9b9ecaa8ce2
[helm.git] / matita / matita / contribs / lambdadelta / delayed_updating / substitution / lift_eq.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "delayed_updating/substitution/lift.ma".
16 include "ground/relocation/tr_pap_pap.ma".
17 include "ground/relocation/tr_pap_eq.ma".
18 include "ground/relocation/tr_pn_eq.ma".
19 include "ground/lib/stream_tls_eq.ma".
20
21 (* LIFT FOR PATH ************************************************************)
22
23 definition lift_exteq (A): relation2 (lift_continuation A) (lift_continuation A) ≝
24            λk1,k2. ∀f1,f2,p. f1 ≗ f2 → k1 f1 p = k2 f2 p.
25
26 interpretation
27   "extensional equivalence (lift continuation)"
28   'RingEq A k1 k2 = (lift_exteq A k1 k2).
29
30 (* Constructions with lift_exteq ********************************************)
31
32 lemma lift_eq_repl (A) (p) (k1) (k2):
33       k1 ≗{A} k2 → stream_eq_repl … (λf1,f2. ↑❨k1, f1, p❩ = ↑❨k2, f2, p❩).
34 #A #p elim p -p [| * [ #n ] #q #IH ]
35 #k1 #k2 #Hk #f1 #f2 #Hf
36 [ <lift_empty <lift_empty /2 width=1 by/
37 | <lift_d_sn <lift_d_sn <(tr_pap_eq_repl … Hf)
38   /3 width=3 by stream_tls_eq_repl, compose_repl_fwd_sn/
39 | /3 width=1 by/
40 | /3 width=1 by tr_push_eq_repl/
41 | /3 width=1 by/
42 | /3 width=1 by/
43 ]
44 qed-.
45
46 (* Advanced constructions ***************************************************)
47
48 lemma lift_lcons_alt (A) (k) (f) (p) (l): k ≗ k →
49       ↑❨λg,p2. k g (l◗p2), f, p❩ = ↑{A}❨λg,p2. k g ((l◗𝐞)●p2), f, p❩.
50 #A #k #f #p #l #Hk
51 @lift_eq_repl // #g1 #g2 #p2 #Hg @Hk -Hk // (**) (* auto fail *)
52 qed.
53
54 lemma lift_append_rcons_sn (A) (k) (f) (p1) (p) (l): k ≗ k →
55       ↑❨λg,p2. k g (p1●l◗p2), f, p❩ = ↑{A}❨λg,p2. k g (p1◖l●p2), f, p❩.
56 #A #k #f #p1 #p #l #Hk
57 @lift_eq_repl // #g1 #g2 #p2 #Hg
58 <list_append_rcons_sn @Hk -Hk // (**) (* auto fail *)
59 qed.
60
61 (* Advanced constructions with proj_path ************************************)
62
63 lemma proj_path_proper:
64       proj_path ≗ proj_path.
65 // qed.
66
67 lemma lift_path_eq_repl (p):
68       stream_eq_repl … (λf1,f2. ↑[f1]p = ↑[f2]p).
69 /2 width=1 by lift_eq_repl/ qed.
70
71 lemma lift_path_append_sn (p) (f) (q):
72       q●↑[f]p = ↑❨(λg,p. proj_path g (q●p)), f, p❩.
73 #p elim p -p // * [ #n ] #p #IH #f #q
74 [ <lift_d_sn <lift_d_sn
75 | <lift_m_sn <lift_m_sn
76 | <lift_L_sn <lift_L_sn
77 | <lift_A_sn <lift_A_sn
78 | <lift_S_sn <lift_S_sn
79
80 >lift_lcons_alt // >lift_append_rcons_sn //
81 <IH <IH -IH <list_append_rcons_sn //
82 qed.
83
84 lemma lift_path_lcons (f) (p) (l):
85       l◗↑[f]p = ↑❨(λg,p. proj_path g (l◗p)), f, p❩.
86 #f #p #l
87 >lift_lcons_alt <lift_path_append_sn //
88 qed.
89
90 lemma lift_path_d_sn (f) (p) (n):
91       (𝗱(f@⧣❨n❩)◗↑[⇂*[n]f]p) = ↑[f](𝗱n◗p).
92 // qed.
93
94 lemma lift_path_m_sn (f) (p):
95       (𝗺◗↑[f]p) = ↑[f](𝗺◗p).
96 // qed.
97
98 lemma lift_path_L_sn (f) (p):
99       (𝗟◗↑[⫯f]p) = ↑[f](𝗟◗p).
100 // qed.
101
102 lemma lift_path_A_sn (f) (p):
103       (𝗔◗↑[f]p) = ↑[f](𝗔◗p).
104 // qed.
105
106 lemma lift_path_S_sn (f) (p):
107       (𝗦◗↑[f]p) = ↑[f](𝗦◗p).
108 // qed.
109
110 lemma lift_path_append (p2) (p1) (f):
111       (↑[f]p1)●(↑[↑[p1]f]p2) = ↑[f](p1●p2).
112 #p2 #p1 elim p1 -p1 //
113 * [ #n1 ] #p1 #IH #f
114 [ <lift_path_d_sn <lift_path_d_sn <IH //
115 | <lift_path_m_sn <lift_path_m_sn <IH //
116 | <lift_path_L_sn <lift_path_L_sn <IH //
117 | <lift_path_A_sn <lift_path_A_sn <IH //
118 | <lift_path_S_sn <lift_path_S_sn <IH //
119 ]
120 qed.
121
122 lemma lift_path_d_dx (f) (p) (n):
123       (↑[f]p)◖𝗱((↑[p]f)@⧣❨n❩) = ↑[f](p◖𝗱n).
124 #f #p #n <lift_path_append //
125 qed.
126
127 lemma lift_path_m_dx (f) (p):
128       (↑[f]p)◖𝗺 = ↑[f](p◖𝗺).
129 #f #p <lift_path_append //
130 qed.
131
132 lemma lift_path_L_dx (f) (p):
133       (↑[f]p)◖𝗟 = ↑[f](p◖𝗟).
134 #f #p <lift_path_append //
135 qed.
136
137 lemma lift_path_A_dx (f) (p):
138       (↑[f]p)◖𝗔 = ↑[f](p◖𝗔).
139 #f #p <lift_path_append //
140 qed.
141
142 lemma lift_path_S_dx (f) (p):
143       (↑[f]p)◖𝗦 = ↑[f](p◖𝗦).
144 #f #p <lift_path_append //
145 qed.
146
147 (* Advanced inversions ******************************************************)
148
149 lemma lift_path_inv_empty (f) (p):
150       (𝐞) = ↑[f]p → 𝐞 = p.
151 #f * // * [ #n ] #p
152 [ <lift_path_d_sn
153 | <lift_path_m_sn
154 | <lift_path_L_sn
155 | <lift_path_A_sn
156 | <lift_path_S_sn
157 ] #H destruct
158 qed-.
159
160 lemma lift_path_inv_d_sn (f) (p) (q) (k):
161       (𝗱k◗q) = ↑[f]p →
162       ∃∃r,h. k = f@⧣❨h❩ & q = ↑[⇂*[h]f]r & 𝗱h◗r = p.
163 #f * [| * [ #n ] #p ] #q #k
164 [ <lift_path_empty
165 | <lift_path_d_sn
166 | <lift_path_m_sn
167 | <lift_path_L_sn
168 | <lift_path_A_sn
169 | <lift_path_S_sn
170 ] #H destruct
171 /2 width=5 by ex3_2_intro/
172 qed-.
173
174 lemma lift_path_inv_m_sn (f) (p) (q):
175       (𝗺◗q) = ↑[f]p →
176       ∃∃r. q = ↑[f]r & 𝗺◗r = p.
177 #f * [| * [ #n ] #p ] #q
178 [ <lift_path_empty
179 | <lift_path_d_sn
180 | <lift_path_m_sn
181 | <lift_path_L_sn
182 | <lift_path_A_sn
183 | <lift_path_S_sn
184 ] #H destruct
185 /2 width=3 by ex2_intro/
186 qed-.
187
188 lemma lift_path_inv_L_sn (f) (p) (q):
189       (𝗟◗q) = ↑[f]p →
190       ∃∃r. q = ↑[⫯f]r & 𝗟◗r = p.
191 #f * [| * [ #n ] #p ] #q
192 [ <lift_path_empty
193 | <lift_path_d_sn
194 | <lift_path_m_sn
195 | <lift_path_L_sn
196 | <lift_path_A_sn
197 | <lift_path_S_sn
198 ] #H destruct
199 /2 width=3 by ex2_intro/
200 qed-.
201
202 lemma lift_path_inv_A_sn (f) (p) (q):
203       (𝗔◗q) = ↑[f]p →
204       ∃∃r. q = ↑[f]r & 𝗔◗r = p.
205 #f * [| * [ #n ] #p ] #q
206 [ <lift_path_empty
207 | <lift_path_d_sn
208 | <lift_path_m_sn
209 | <lift_path_L_sn
210 | <lift_path_A_sn
211 | <lift_path_S_sn
212 ] #H destruct
213 /2 width=3 by ex2_intro/
214 qed-.
215
216 lemma lift_path_inv_S_sn (f) (p) (q):
217       (𝗦◗q) = ↑[f]p →
218       ∃∃r. q = ↑[f]r & 𝗦◗r = p.
219 #f * [| * [ #n ] #p ] #q
220 [ <lift_path_empty
221 | <lift_path_d_sn
222 | <lift_path_m_sn
223 | <lift_path_L_sn
224 | <lift_path_A_sn
225 | <lift_path_S_sn
226 ] #H destruct
227 /2 width=3 by ex2_intro/
228 qed-.
229
230 lemma lift_path_inv_append_dx (q2) (q1) (p) (f):
231       q1●q2 = ↑[f]p →
232       ∃∃p1,p2. q1 = ↑[f]p1 & q2 = ↑[↑[p1]f]p2 & p1●p2 = p.
233 #q2 #q1 elim q1 -q1
234 [| * [ #n1 ] #q1 #IH ] #p #f
235 [ <list_append_empty_sn #H0 destruct
236   /2 width=5 by ex3_2_intro/
237 | <list_append_lcons_sn #H0
238   elim (lift_path_inv_d_sn … H0) -H0 #r1 #m1 #_ #_ #H0 #_ -IH
239     elim (eq_inv_list_empty_append … H0) -H0 #_ #H0 destruct
240     elim Hq2 -Hq2 //
241   | elim (lift_path_inv_m_sn … H)
242   | elim (lift_path_inv_L_sn … H) -H #r1 #s1 #Hr1 #Hs1 #H0 destruct
243     elim (IH … Hs1) -IH -Hs1 // -Hq2 #p1 #p2 #H1 #H2 #H3 destruct
244     @(ex3_2_intro … (r1●𝗟◗p1)) //
245     <structure_append <Hr1 -Hr1 //
246   | elim (lift_path_inv_A_sn … H) -H #r1 #s1 #Hr1 #Hs1 #H0 destruct
247     elim (IH … Hs1) -IH -Hs1 // -Hq2 #p1 #p2 #H1 #H2 #H3 destruct
248     @(ex3_2_intro … (r1●𝗔◗p1)) //
249     <structure_append <Hr1 -Hr1 //
250   | elim (lift_path_inv_S_sn … H) -H #r1 #s1 #Hr1 #Hs1 #H0 destruct
251     elim (IH … Hs1) -IH -Hs1 // -Hq2 #p1 #p2 #H1 #H2 #H3 destruct
252     @(ex3_2_intro … (r1●𝗦◗p1)) //
253     <structure_append <Hr1 -Hr1 //
254   ]
255 ]
256 qed-.
257
258 (* Main inversions **********************************************************)
259
260 theorem lift_path_inj (q:path) (p) (f):
261         ↑[f]q = ↑[f]p → q = p.
262 #q elim q -q [| * [ #k ] #q #IH ] #p #f
263 [ <lift_path_empty #H0
264   <(lift_path_inv_empty … H0) -H0 //
265 | <lift_path_d_sn #H0
266   elim (lift_path_inv_d_sn … H0) -H0 #r #h #H0
267   <(tr_pap_inj ????? H0) -h [1,3: // ] #Hr #H0 destruct
268 | <lift_path_m_sn #H0
269   elim (lift_path_inv_m_sn … H0) -H0 #r #Hr #H0 destruct
270 | <lift_path_L_sn #H0
271   elim (lift_path_inv_L_sn … H0) -H0 #r #Hr #H0 destruct
272 | <lift_path_A_sn #H0
273   elim (lift_path_inv_A_sn … H0) -H0 #r #Hr #H0 destruct
274 | <lift_path_S_sn #H0
275   elim (lift_path_inv_S_sn … H0) -H0 #r #Hr #H0 destruct
276 ]
277 <(IH … Hr) -r -IH //
278 qed-.
279
280 (* COMMENT 
281
282 (* Advanced constructions with proj_rmap and stream_tls *********************)
283
284 lemma lift_rmap_tls_d_dx (f) (p) (m) (n):
285       ⇂*[m+n]↑[p]f ≗ ⇂*[m]↑[p◖𝗱n]f.
286 #f #p #m #n
287 <lift_rmap_d_dx >nrplus_inj_dx
288 /2 width=1 by tr_tls_compose_uni_dx/
289 qed.
290
291 *)