]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/delayed_updating/substitution/lift_eq.ma
update in delayed_updating
[helm.git] / matita / matita / contribs / lambdadelta / delayed_updating / substitution / lift_eq.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "delayed_updating/substitution/lift.ma".
16 include "ground/relocation/tr_pap_eq.ma".
17 include "ground/relocation/tr_pn_eq.ma".
18 include "ground/lib/stream_tls_eq.ma".
19
20 (* LIFT FOR PATH ************************************************************)
21
22 definition lift_exteq (A): relation2 (lift_continuation A) (lift_continuation A) ≝
23            λk1,k2. ∀f1,f2,p. f1 ≗ f2 → k1 f1 p = k2 f2 p.
24
25 interpretation
26   "extensional equivalence (lift continuation)"
27   'RingEq A k1 k2 = (lift_exteq A k1 k2).
28
29 (* Constructions with lift_exteq ********************************************)
30
31 lemma lift_eq_repl (A) (p) (k1) (k2):
32       k1 ≗{A} k2 → stream_eq_repl … (λf1,f2. ↑❨k1, f1, p❩ = ↑❨k2, f2, p❩).
33 #A #p elim p -p [| * [ #n ] #q #IH ]
34 #k1 #k2 #Hk #f1 #f2 #Hf
35 [ <lift_empty <lift_empty /2 width=1 by/
36 | <lift_d_sn <lift_d_sn <(tr_pap_eq_repl … Hf)
37   /3 width=3 by stream_tls_eq_repl, compose_repl_fwd_sn/
38 | /3 width=1 by/
39 | /3 width=1 by tr_push_eq_repl/
40 | /3 width=1 by/
41 | /3 width=1 by/
42 ]
43 qed-.
44
45 (* Advanced constructions ***************************************************)
46
47 lemma lift_lcons_alt (A) (k) (f) (p) (l): k ≗ k →
48       ↑❨λg,p2. k g (l◗p2), f, p❩ = ↑{A}❨λg,p2. k g ((l◗𝐞)●p2), f, p❩.
49 #A #k #f #p #l #Hk
50 @lift_eq_repl // #g1 #g2 #p2 #Hg @Hk -Hk // (**) (* auto fail *)
51 qed.
52
53 lemma lift_append_rcons_sn (A) (k) (f) (p1) (p) (l): k ≗ k →
54       ↑❨λg,p2. k g (p1●l◗p2), f, p❩ = ↑{A}❨λg,p2. k g (p1◖l●p2), f, p❩.
55 #A #k #f #p1 #p #l #Hk
56 @lift_eq_repl // #g1 #g2 #p2 #Hg
57 <list_append_rcons_sn @Hk -Hk // (**) (* auto fail *)
58 qed.
59
60 (* Advanced constructions with proj_path ************************************)
61
62 lemma proj_path_proper:
63       proj_path ≗ proj_path.
64 // qed.
65
66 lemma lift_path_eq_repl (p):
67       stream_eq_repl … (λf1,f2. ↑[f1]p = ↑[f2]p).
68 /2 width=1 by lift_eq_repl/ qed.
69
70 lemma lift_path_append_sn (p) (f) (q):
71       q●↑[f]p = ↑❨(λg,p. proj_path g (q●p)), f, p❩.
72 #p elim p -p // * [ #n ] #p #IH #f #q
73 [ <lift_d_sn <lift_d_sn
74 | <lift_m_sn <lift_m_sn
75 | <lift_L_sn <lift_L_sn
76 | <lift_A_sn <lift_A_sn
77 | <lift_S_sn <lift_S_sn
78
79 >lift_lcons_alt // >lift_append_rcons_sn //
80 <IH <IH -IH <list_append_rcons_sn //
81 qed.
82
83 lemma lift_path_lcons (f) (p) (l):
84       l◗↑[f]p = ↑❨(λg,p. proj_path g (l◗p)), f, p❩.
85 #f #p #l
86 >lift_lcons_alt <lift_path_append_sn //
87 qed.
88
89 lemma lift_path_d_sn (f) (p) (n):
90       (𝗱(f@⧣❨n❩)◗↑[⇂*[n]f]p) = ↑[f](𝗱n◗p).
91 // qed.
92
93 lemma lift_path_m_sn (f) (p):
94       (𝗺◗↑[f]p) = ↑[f](𝗺◗p).
95 // qed.
96
97 lemma lift_path_L_sn (f) (p):
98       (𝗟◗↑[⫯f]p) = ↑[f](𝗟◗p).
99 // qed.
100
101 lemma lift_path_A_sn (f) (p):
102       (𝗔◗↑[f]p) = ↑[f](𝗔◗p).
103 // qed.
104
105 lemma lift_path_S_sn (f) (p):
106       (𝗦◗↑[f]p) = ↑[f](𝗦◗p).
107 // qed.
108
109 lemma lift_path_append (p2) (p1) (f):
110       (↑[f]p1)●(↑[↑[p1]f]p2) = ↑[f](p1●p2).
111 #p2 #p1 elim p1 -p1 //
112 * [ #n1 ] #p1 #IH #f
113 [ <lift_path_d_sn <lift_path_d_sn <IH //
114 | <lift_path_m_sn <lift_path_m_sn <IH //
115 | <lift_path_L_sn <lift_path_L_sn <IH //
116 | <lift_path_A_sn <lift_path_A_sn <IH //
117 | <lift_path_S_sn <lift_path_S_sn <IH //
118 ]
119 qed.
120
121 lemma lift_path_d_dx (f) (p) (n):
122       (↑[f]p)◖𝗱((↑[p]f)@⧣❨n❩) = ↑[f](p◖𝗱n).
123 #f #p #n <lift_path_append //
124 qed.
125
126 lemma lift_path_m_dx (f) (p):
127       (↑[f]p)◖𝗺 = ↑[f](p◖𝗺).
128 #f #p <lift_path_append //
129 qed.
130
131 lemma lift_path_L_dx (f) (p):
132       (↑[f]p)◖𝗟 = ↑[f](p◖𝗟).
133 #f #p <lift_path_append //
134 qed.
135
136 lemma lift_path_A_dx (f) (p):
137       (↑[f]p)◖𝗔 = ↑[f](p◖𝗔).
138 #f #p <lift_path_append //
139 qed.
140
141 lemma lift_path_S_dx (f) (p):
142       (↑[f]p)◖𝗦 = ↑[f](p◖𝗦).
143 #f #p <lift_path_append //
144 qed.
145
146 (* COMMENT 
147
148 (* Advanced constructions with proj_rmap and stream_tls *********************)
149
150 lemma lift_rmap_tls_d_dx (f) (p) (m) (n):
151       ⇂*[m+n]↑[p]f ≗ ⇂*[m]↑[p◖𝗱n]f.
152 #f #p #m #n
153 <lift_rmap_d_dx >nrplus_inj_dx
154 /2 width=1 by tr_tls_compose_uni_dx/
155 qed.
156
157 *)