]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/delayed_updating/substitution/lift_gen_eq.ma
update in delayed_updating
[helm.git] / matita / matita / contribs / lambdadelta / delayed_updating / substitution / lift_gen_eq.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "delayed_updating/substitution/lift_gen.ma".
16 include "ground/relocation/tr_pap_pap.ma".
17 include "ground/relocation/tr_pap_eq.ma".
18 include "ground/relocation/tr_pn_eq.ma".
19 include "ground/lib/stream_tls_plus.ma".
20 include "ground/lib/stream_tls_eq.ma".
21 include "ground/arith/nat_plus_rplus.ma".
22 include "ground/arith/nat_rplus_pplus.ma".
23
24 (* LIFT FOR PATH ************************************************************)
25
26 definition lift_exteq (A): relation2 (lift_continuation A) (lift_continuation A) ≝
27            λk1,k2. ∀f1,f2,p. f1 ≗ f2 → k1 f1 p = k2 f2 p.
28
29 interpretation
30   "extensional equivalence (lift continuation)"
31   'RingEq A k1 k2 = (lift_exteq A k1 k2).
32
33 (* Constructions with lift_exteq ********************************************)
34
35 lemma lift_eq_repl (A) (p) (k1) (k2):
36       k1 ≗{A} k2 → stream_eq_repl … (λf1,f2. ↑❨k1, f1, p❩ = ↑❨k2, f2, p❩).
37 #A #p elim p -p [| * [ #n ] #q #IH ]
38 #k1 #k2 #Hk #f1 #f2 #Hf
39 [ <lift_empty <lift_empty /2 width=1 by/
40 | <lift_d_sn <lift_d_sn <(tr_pap_eq_repl … Hf)
41   /3 width=3 by stream_tls_eq_repl, compose_repl_fwd_sn/
42 | /3 width=1 by/
43 | /3 width=1 by tr_push_eq_repl/
44 | /3 width=1 by/
45 | /3 width=1 by/
46 ]
47 qed-.
48
49 (* Advanced constructions ***************************************************)
50
51 lemma lift_lcons_alt (A) (k) (f) (p) (l): k ≗ k →
52       ↑❨λg,p2. k g (l◗p2), f, p❩ = ↑{A}❨λg,p2. k g ((l◗𝐞)●p2), f, p❩.
53 #A #k #f #p #l #Hk
54 @lift_eq_repl // #g1 #g2 #p2 #Hg @Hk -Hk // (**) (* auto fail *)
55 qed.
56
57 lemma lift_append_rcons_sn (A) (k) (f) (p1) (p) (l): k ≗ k →
58       ↑❨λg,p2. k g (p1●l◗p2), f, p❩ = ↑{A}❨λg,p2. k g (p1◖l●p2), f, p❩.
59 #A #k #f #p1 #p #l #Hk
60 @lift_eq_repl // #g1 #g2 #p2 #Hg
61 <list_append_rcons_sn @Hk -Hk // (**) (* auto fail *)
62 qed.
63
64 (* Advanced constructions with proj_path ************************************)
65
66 lemma proj_path_proper:
67       proj_path ≗ proj_path.
68 // qed.
69
70 lemma lift_path_eq_repl (p):
71       stream_eq_repl … (λf1,f2. ↑[f1]p = ↑[f2]p).
72 /2 width=1 by lift_eq_repl/ qed.
73
74 lemma lift_path_append_sn (p) (f) (q):
75       q●↑[f]p = ↑❨(λg,p. proj_path g (q●p)), f, p❩.
76 #p elim p -p // * [ #n ] #p #IH #f #q
77 [ <lift_d_sn <lift_d_sn
78 | <lift_m_sn <lift_m_sn
79 | <lift_L_sn <lift_L_sn
80 | <lift_A_sn <lift_A_sn
81 | <lift_S_sn <lift_S_sn
82
83 >lift_lcons_alt // >lift_append_rcons_sn //
84 <IH <IH -IH <list_append_rcons_sn //
85 qed.
86
87 lemma lift_path_lcons (f) (p) (l):
88       l◗↑[f]p = ↑❨(λg,p. proj_path g (l◗p)), f, p❩.
89 #f #p #l
90 >lift_lcons_alt <lift_path_append_sn //
91 qed.
92
93 lemma lift_path_d_sn (f) (p) (n):
94       (𝗱(f@⧣❨n❩)◗↑[⇂*[n]f]p) = ↑[f](𝗱n◗p).
95 // qed.
96
97 lemma lift_path_m_sn (f) (p):
98       (𝗺◗↑[f]p) = ↑[f](𝗺◗p).
99 // qed.
100
101 lemma lift_path_L_sn (f) (p):
102       (𝗟◗↑[⫯f]p) = ↑[f](𝗟◗p).
103 // qed.
104
105 lemma lift_path_A_sn (f) (p):
106       (𝗔◗↑[f]p) = ↑[f](𝗔◗p).
107 // qed.
108
109 lemma lift_path_S_sn (f) (p):
110       (𝗦◗↑[f]p) = ↑[f](𝗦◗p).
111 // qed.
112
113 lemma lift_path_append (p2) (p1) (f):
114       (↑[f]p1)●(↑[↑[p1]f]p2) = ↑[f](p1●p2).
115 #p2 #p1 elim p1 -p1 //
116 * [ #n1 ] #p1 #IH #f
117 [ <lift_path_d_sn <lift_path_d_sn <IH //
118 | <lift_path_m_sn <lift_path_m_sn <IH //
119 | <lift_path_L_sn <lift_path_L_sn <IH //
120 | <lift_path_A_sn <lift_path_A_sn <IH //
121 | <lift_path_S_sn <lift_path_S_sn <IH //
122 ]
123 qed.
124
125 lemma lift_path_d_dx (f) (p) (n):
126       (↑[f]p)◖𝗱((↑[p]f)@⧣❨n❩) = ↑[f](p◖𝗱n).
127 #f #p #n <lift_path_append //
128 qed.
129
130 lemma lift_path_m_dx (f) (p):
131       (↑[f]p)◖𝗺 = ↑[f](p◖𝗺).
132 #f #p <lift_path_append //
133 qed.
134
135 lemma lift_path_L_dx (f) (p):
136       (↑[f]p)◖𝗟 = ↑[f](p◖𝗟).
137 #f #p <lift_path_append //
138 qed.
139
140 lemma lift_path_A_dx (f) (p):
141       (↑[f]p)◖𝗔 = ↑[f](p◖𝗔).
142 #f #p <lift_path_append //
143 qed.
144
145 lemma lift_path_S_dx (f) (p):
146       (↑[f]p)◖𝗦 = ↑[f](p◖𝗦).
147 #f #p <lift_path_append //
148 qed.
149
150 (* Advanced constructions with proj_rmap ************************************)
151
152 lemma lift_rmap_eq_repl (p):
153       stream_eq_repl … (λf1,f2. ↑[p]f1 ≗ ↑[p]f2).
154 #p elim p -p //
155 * [ #n ] #p #IH #f1 #f2 #Hf
156 [ /3 width=1 by stream_tls_eq_repl/
157 | /2 width=1 by/
158 | /3 width=1 by tr_push_eq_repl/
159 | /2 width=1 by/
160 | /2 width=1 by/
161 ]
162 qed.
163
164 lemma tls_lift_rmap_d_dx (f) (p) (m) (n):
165       ⇂*[m+n]↑[p]f ≗ ⇂*[m]↑[p◖𝗱n]f.
166 #f #p #m #n
167 <lift_rmap_d_dx >nrplus_inj_dx >nrplus_inj_sn //
168 qed.
169
170 (* Advanced inversions with proj_path ***************************************)
171
172 lemma lift_path_inv_empty (f) (p):
173       (𝐞) = ↑[f]p → 𝐞 = p.
174 #f * // * [ #n ] #p
175 [ <lift_path_d_sn
176 | <lift_path_m_sn
177 | <lift_path_L_sn
178 | <lift_path_A_sn
179 | <lift_path_S_sn
180 ] #H destruct
181 qed-.
182
183 lemma lift_path_inv_d_sn (f) (p) (q) (k):
184       (𝗱k◗q) = ↑[f]p →
185       ∃∃r,h. k = f@⧣❨h❩ & q = ↑[⇂*[h]f]r & 𝗱h◗r = p.
186 #f * [| * [ #n ] #p ] #q #k
187 [ <lift_path_empty
188 | <lift_path_d_sn
189 | <lift_path_m_sn
190 | <lift_path_L_sn
191 | <lift_path_A_sn
192 | <lift_path_S_sn
193 ] #H destruct
194 /2 width=5 by ex3_2_intro/
195 qed-.
196
197 lemma lift_path_inv_m_sn (f) (p) (q):
198       (𝗺◗q) = ↑[f]p →
199       ∃∃r. q = ↑[f]r & 𝗺◗r = p.
200 #f * [| * [ #n ] #p ] #q
201 [ <lift_path_empty
202 | <lift_path_d_sn
203 | <lift_path_m_sn
204 | <lift_path_L_sn
205 | <lift_path_A_sn
206 | <lift_path_S_sn
207 ] #H destruct
208 /2 width=3 by ex2_intro/
209 qed-.
210
211 lemma lift_path_inv_L_sn (f) (p) (q):
212       (𝗟◗q) = ↑[f]p →
213       ∃∃r. q = ↑[⫯f]r & 𝗟◗r = p.
214 #f * [| * [ #n ] #p ] #q
215 [ <lift_path_empty
216 | <lift_path_d_sn
217 | <lift_path_m_sn
218 | <lift_path_L_sn
219 | <lift_path_A_sn
220 | <lift_path_S_sn
221 ] #H destruct
222 /2 width=3 by ex2_intro/
223 qed-.
224
225 lemma lift_path_inv_A_sn (f) (p) (q):
226       (𝗔◗q) = ↑[f]p →
227       ∃∃r. q = ↑[f]r & 𝗔◗r = p.
228 #f * [| * [ #n ] #p ] #q
229 [ <lift_path_empty
230 | <lift_path_d_sn
231 | <lift_path_m_sn
232 | <lift_path_L_sn
233 | <lift_path_A_sn
234 | <lift_path_S_sn
235 ] #H destruct
236 /2 width=3 by ex2_intro/
237 qed-.
238
239 lemma lift_path_inv_S_sn (f) (p) (q):
240       (𝗦◗q) = ↑[f]p →
241       ∃∃r. q = ↑[f]r & 𝗦◗r = p.
242 #f * [| * [ #n ] #p ] #q
243 [ <lift_path_empty
244 | <lift_path_d_sn
245 | <lift_path_m_sn
246 | <lift_path_L_sn
247 | <lift_path_A_sn
248 | <lift_path_S_sn
249 ] #H destruct
250 /2 width=3 by ex2_intro/
251 qed-.
252
253 lemma lift_path_inv_append_sn (q2) (q1) (p) (f):
254       q1●q2 = ↑[f]p →
255       ∃∃p1,p2. q1 = ↑[f]p1 & q2 = ↑[↑[p1]f]p2 & p1●p2 = p.
256 #q2 #q1 elim q1 -q1
257 [| * [ #n1 ] #q1 #IH ] #p #f
258 [ <list_append_empty_sn #H0 destruct
259   /2 width=5 by ex3_2_intro/
260 | <list_append_lcons_sn #H0
261   elim (lift_path_inv_d_sn … H0) -H0 #r1 #m1 #H1 #H0 #H2 destruct
262   elim (IH … H0) -IH -H0 #p1 #p2 #H1 #H2 #H3 destruct
263   /2 width=5 by ex3_2_intro/
264 | <list_append_lcons_sn #H0
265   elim (lift_path_inv_m_sn … H0) -H0 #r1 #H0 #H1 destruct
266   elim (IH … H0) -IH -H0 #p1 #p2 #H1 #H2 #H3 destruct
267   /2 width=5 by ex3_2_intro/
268 | <list_append_lcons_sn #H0
269   elim (lift_path_inv_L_sn … H0) -H0 #r1 #H0 #H1 destruct
270   elim (IH … H0) -IH -H0 #p1 #p2 #H1 #H2 #H3 destruct
271   /2 width=5 by ex3_2_intro/
272 | <list_append_lcons_sn #H0
273   elim (lift_path_inv_A_sn … H0) -H0 #r1 #H0 #H1 destruct
274   elim (IH … H0) -IH -H0 #p1 #p2 #H1 #H2 #H3 destruct
275   /2 width=5 by ex3_2_intro/
276 | <list_append_lcons_sn #H0
277   elim (lift_path_inv_S_sn … H0) -H0 #r1 #H0 #H1 destruct
278   elim (IH … H0) -IH -H0 #p1 #p2 #H1 #H2 #H3 destruct
279   /2 width=5 by ex3_2_intro/
280 ]
281 qed-.
282
283 (* Main inversions with proj_path *******************************************)
284
285 theorem lift_path_inj (q:path) (p) (f):
286         ↑[f]q = ↑[f]p → q = p.
287 #q elim q -q [| * [ #k ] #q #IH ] #p #f
288 [ <lift_path_empty #H0
289   <(lift_path_inv_empty … H0) -H0 //
290 | <lift_path_d_sn #H0
291   elim (lift_path_inv_d_sn … H0) -H0 #r #h #H0
292   >(tr_pap_inj ???? H0) -k [1,3: // ] #Hr #H0 destruct
293 | <lift_path_m_sn #H0
294   elim (lift_path_inv_m_sn … H0) -H0 #r #Hr #H0 destruct
295 | <lift_path_L_sn #H0
296   elim (lift_path_inv_L_sn … H0) -H0 #r #Hr #H0 destruct
297 | <lift_path_A_sn #H0
298   elim (lift_path_inv_A_sn … H0) -H0 #r #Hr #H0 destruct
299 | <lift_path_S_sn #H0
300   elim (lift_path_inv_S_sn … H0) -H0 #r #Hr #H0 destruct
301 ]
302 <(IH … Hr) -r -IH //
303 qed-.
304