]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/ground/arith/nat_plus.ma
arithmetics for λδ
[helm.git] / matita / matita / contribs / lambdadelta / ground / arith / nat_plus.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground/arith/nat_succ_iter.ma".
16
17 (* ADDITION FOR NON-NEGATIVE INTEGERS ***************************************)
18
19 (*** plus *)
20 definition nplus: nat → nat → nat ≝
21            λm,n. nsucc^n m.
22
23 interpretation
24   "plus (positive integers)"
25   'plus m n = (nplus m n).
26
27 (* Basic constructions ******************************************************)
28
29 (*** plus_n_O *)
30 lemma nplus_zero_dx (m): m = m + 𝟎.
31 // qed.
32
33 (*** plus_SO_dx *)
34 lemma nplus_one_dx (n): ↑n = n + 𝟏.
35 // qed.
36
37 (*** plus_n_Sm *)
38 lemma nplus_succ_dx (m) (n): ↑(m+n) = m + ↑n.
39 #m #n @(niter_succ … nsucc)
40 qed.
41
42 (* Constructions with niter *************************************************)
43
44 (*** iter_plus *)
45 lemma niter_plus (A) (f) (a) (n1) (n2):
46       f^n1 (f^n2 a) = f^{A}(n1+n2) a.
47 #A #f #a #n1 #n2 @(nat_ind_succ … n2) -n2 //
48 #n2 #IH <nplus_succ_dx <niter_succ <niter_succ <niter_appl //
49 qed.
50
51 (* Advanved constructions (semigroup properties) ****************************)
52
53 (*** plus_S1 *)
54 lemma nplus_succ_sn (m) (n): ↑(m+n) = ↑m + n.
55 #m #n @(niter_appl … nsucc)
56 qed.
57
58 (*** plus_O_n.con *)
59 lemma nplus_zero_sn (m): m = 𝟎 + m.
60 #m @(nat_ind_succ … m) -m //
61 qed.
62
63 (*** commutative_plus *)
64 lemma nplus_comm: commutative … nplus.
65 #m @(nat_ind_succ … m) -m //
66 qed-.
67
68 (*** associative_plus *)
69 lemma nplus_assoc: associative … nplus.
70 #m #n #o @(nat_ind_succ … o) -o //
71 #o #IH <nplus_succ_dx <nplus_succ_dx <nplus_succ_dx <IH -IH //
72 qed.
73
74 (* Helper constructions *****************************************************)
75
76 (*** plus_SO_sn *)
77 lemma nplus_one_sn (n): ↑n = 𝟏 + n.
78 #n <nplus_comm // qed.
79
80 lemma nplus_succ_shift (m) (n): ↑m + n = m + ↑n.
81 // qed-.
82
83 (*** assoc_plus1 *)
84 lemma nplus_plus_comm_12 (o) (m) (n): m + n + o = n + (m + o).
85 #o #m #n <nplus_comm in ⊢ (??(?%?)?); // qed.
86
87 (*** plus_plus_comm_23 *)
88 lemma nplus_plus_comm_23 (o) (m) (n): o + m + n = o + n + m.
89 #o #m #n >nplus_assoc >nplus_assoc <nplus_comm in ⊢ (??(??%)?); //
90 qed-.
91
92 (* Basic inversions *********************************************************)
93
94 lemma eq_inv_nzero_plus (m) (n): 𝟎 = m + n → ∧∧ 𝟎 = m & 𝟎 = n.
95 #m #n @(nat_ind_succ … n) -n
96 [ /2 width=1 by conj/
97 | #n #_ <nplus_succ_dx #H
98   elim (eq_inv_nzero_succ … H)
99 ]
100 qed-.
101
102 (*** injective_plus_l *)
103 lemma eq_inv_nplus_bi_dx (o) (m) (n): m + o = n + o → m = n.
104 #o @(nat_ind_succ … o) -o /3 width=1 by eq_inv_nsucc_bi/
105 qed-.
106
107 (*** injective_plus_r *)
108 lemma eq_inv_nplus_bi_sn (o) (m) (n): o + m = o + n → m = n.
109 #o #m #n <nplus_comm <nplus_comm in ⊢ (???%→?);
110 /2 width=2 by eq_inv_nplus_bi_dx/
111 qed-.
112
113 (* Advanced eliminations ****************************************************)
114
115 (*** nat_ind_plus *)
116 lemma nat_ind_plus (Q:predicate …):
117       Q (𝟎) → (∀n. Q n → Q (𝟏+n)) → ∀n. Q n.
118 #Q #IH1 #IH2 #n @(nat_ind_succ … n) -n /2 width=1 by/
119 qed-.