]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/ground/relocation/pstream_after.ma
propagating the arithmetics library, partial commit
[helm.git] / matita / matita / contribs / lambdadelta / ground / relocation / pstream_after.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground/relocation/pstream_tls.ma".
16 include "ground/relocation/pstream_istot.ma".
17 include "ground/relocation/rtmap_after.ma".
18
19 (* RELOCATION N-STREAM ******************************************************)
20
21 corec definition compose: rtmap → rtmap → rtmap.
22 #f2 * #p1 #f1 @(stream_cons … (f2@❨p1❩)) @(compose ? f1) -compose -f1
23 @(⫰*[p1]f2)
24 defined.
25
26 interpretation "functional composition (nstream)"
27    'compose f2 f1 = (compose f2 f1).
28
29 (* Basic properies on compose ***********************************************)
30
31 lemma compose_rew: ∀f2,f1,p1. f2@❨p1❩⨮(⫰*[p1]f2)∘f1 = f2∘(p1⨮f1).
32 #f2 #f1 #p1 <(stream_rew … (f2∘(p1⨮f1))) normalize //
33 qed.
34
35 lemma compose_next: ∀f2,f1,f. f2∘f1 = f → (↑f2)∘f1 = ↑f.
36 #f2 * #p1 #f1 #f <compose_rew <compose_rew
37 * -f /2 width=1 by eq_f2/
38 qed.
39
40 (* Basic inversion lemmas on compose ****************************************)
41
42 lemma compose_inv_rew: ∀f2,f1,f,p1,p. f2∘(p1⨮f1) = p⨮f →
43                        f2@❨p1❩ = p ∧ (⫰*[p1]f2)∘f1 = f.
44 #f2 #f1 #f #p1 #p <compose_rew
45 #H destruct /2 width=1 by conj/
46 qed-.
47
48 lemma compose_inv_O2: ∀f2,f1,f,p2,p. (p2⨮f2)∘(⫯f1) = p⨮f →
49                       p2 = p ∧ f2∘f1 = f.
50 #f2 #f1 #f #p2 #p <compose_rew
51 #H destruct /2 width=1 by conj/
52 qed-.
53
54 lemma compose_inv_S2: ∀f2,f1,f,p2,p1,p. (p2⨮f2)∘(↑p1⨮f1) = p⨮f →
55                       f2@❨p1❩+p2 = p ∧ f2∘(p1⨮f1) = f2@❨p1❩⨮f.
56 #f2 #f1 #f #p2 #p1 #p <compose_rew
57 #H destruct >nsucc_inj <stream_tls_swap
58 /2 width=1 by conj/
59 qed-.
60
61 lemma compose_inv_S1: ∀f2,f1,f,p1,p. (↑f2)∘(p1⨮f1) = p⨮f →
62                       ↑(f2@❨p1❩) = p ∧ f2∘(p1⨮f1) = f2@❨p1❩⨮f.
63 #f2 #f1 #f #p1 #p <compose_rew
64 #H destruct /2 width=1 by conj/
65 qed-.
66
67 (* Specific properties on after *********************************************)
68
69 lemma after_O2: ∀f2,f1,f. f2 ⊚ f1 ≘ f →
70                 ∀p. p⨮f2 ⊚ ⫯f1 ≘ p⨮f.
71 #f2 #f1 #f #Hf #p elim p -p
72 /2 width=7 by after_refl, after_next/
73 qed.
74
75 lemma after_S2: ∀f2,f1,f,p1,p. f2 ⊚ p1⨮f1 ≘ p⨮f →
76                 ∀p2. p2⨮f2 ⊚ ↑p1⨮f1 ≘ (p+p2)⨮f.
77 #f2 #f1 #f #p1 #p #Hf #p2 elim p2 -p2
78 /2 width=7 by after_next, after_push/
79 qed.
80
81 lemma after_apply: ∀p1,f2,f1,f.
82       (⫰*[ninj p1] f2) ⊚ f1 ≘ f → f2 ⊚ p1⨮f1 ≘ f2@❨p1❩⨮f.
83 #p1 elim p1 -p1
84 [ * /2 width=1 by after_O2/
85 | #p1 #IH * #p2 #f2 >nsucc_inj <stream_tls_swap
86   /3 width=1 by after_S2/
87 ]
88 qed-.
89
90 corec lemma after_total_aux: ∀f2,f1,f. f2 ∘ f1 = f → f2 ⊚ f1 ≘ f.
91 * #p2 #f2 * #p1 #f1 * #p #f cases p2 -p2
92 [ cases p1 -p1
93   [ #H cases (compose_inv_O2 … H) -H /3 width=7 by after_refl, eq_f2/
94   | #p1 #H cases (compose_inv_S2 … H) -H * -p /3 width=7 by after_push/
95   ]
96 | #p2 >next_rew #H cases (compose_inv_S1 … H) -H * -p >next_rew
97   /3 width=5 by after_next/
98 ]
99 qed-.
100
101 theorem after_total: ∀f1,f2. f2 ⊚ f1 ≘ f2 ∘ f1.
102 /2 width=1 by after_total_aux/ qed.
103
104 (* Specific inversion lemmas on after ***************************************)
105
106 lemma after_inv_xpx: ∀f2,g2,f,p2,p. p2⨮f2 ⊚ g2 ≘ p⨮f → ∀f1. ⫯f1 = g2 →
107                      f2 ⊚ f1 ≘ f ∧ p2 = p.
108 #f2 #g2 #f #p2 elim p2 -p2
109 [ #p #Hf #f1 #H2 elim (after_inv_ppx … Hf … H2) -g2 [|*: // ]
110   #g #Hf #H elim (push_inv_seq_dx … H) -H destruct /2 width=1 by conj/
111 | #p2 #IH #p #Hf #f1 #H2 elim (after_inv_nxx … Hf) -Hf [|*: // ]
112   #g1 #Hg #H1 elim (next_inv_seq_dx … H1) -H1
113   #x #Hx #H destruct elim (IH … Hg) [|*: // ] -IH -Hg
114   #H destruct /2 width=1 by conj/
115 ]
116 qed-.
117
118 lemma after_inv_xnx: ∀f2,g2,f,p2,p. p2⨮f2 ⊚ g2 ≘ p⨮f → ∀f1. ↑f1 = g2 →
119                      ∃∃q. f2 ⊚ f1 ≘ q⨮f & q+p2 = p.
120 #f2 #g2 #f #p2 elim p2 -p2
121 [ #p #Hf #f1 #H2 elim (after_inv_pnx … Hf … H2) -g2 [|*: // ]
122   #g #Hf #H elim (next_inv_seq_dx … H) -H
123   #x #Hx #Hg destruct /2 width=3 by ex2_intro/
124 | #p2 #IH #p #Hf #f1 #H2 elim (after_inv_nxx … Hf) -Hf [|*: // ]
125   #g #Hg #H elim (next_inv_seq_dx … H) -H
126   #x #Hx #H destruct elim (IH … Hg) -IH -Hg [|*: // ]
127   #m #Hf #Hm destruct /2 width=3 by ex2_intro/
128 ]
129 qed-.
130
131 lemma after_inv_const: ∀f2,f1,f,p1,p.
132       p⨮f2 ⊚ p1⨮f1 ≘ p⨮f → f2 ⊚ f1 ≘ f ∧ 𝟏 = p1.
133 #f2 #f1 #f #p1 #p elim p -p
134 [ #H elim (after_inv_pxp … H) -H [|*: // ]
135   #g2 #Hf #H elim (push_inv_seq_dx … H) -H /2 width=1 by conj/
136 | #p #IH #H lapply (after_inv_nxn … H ????) -H /2 width=5 by/
137 ]
138 qed-.
139
140 lemma after_inv_total: ∀f2,f1,f. f2 ⊚ f1 ≘ f → f2 ∘ f1 ≡ f.
141 /2 width=4 by after_mono/ qed-.
142
143 (* Specific forward lemmas on after *****************************************)
144
145 lemma after_fwd_hd: ∀f2,f1,f,p1,p. f2 ⊚ p1⨮f1 ≘ p⨮f → f2@❨p1❩ = p.
146 #f2 #f1 #f #p1 #p #H lapply (after_fwd_at ? p1 (𝟏) … H) -H [4:|*: // ]
147 /3 width=2 by at_inv_O1, sym_eq/
148 qed-.
149
150 lemma after_fwd_tls: ∀f,f1,p1,f2,p2,p. p2⨮f2 ⊚ p1⨮f1 ≘ p⨮f →
151                      (⫰*[↓p1]f2) ⊚ f1 ≘ f.
152 #f #f1 #p1 elim p1 -p1
153 [ #f2 #p2 #p #H elim (after_inv_xpx … H) -H //
154 | #p1 #IH * #q2 #f2 #p2 #p #H elim (after_inv_xnx … H) -H [|*: // ]
155   #x #Hx #H destruct /2 width=3 by/
156 ]
157 qed-.
158
159 lemma after_inv_apply: ∀f2,f1,f,p2,p1,p. p2⨮f2 ⊚ p1⨮f1 ≘ p⨮f →
160                        (p2⨮f2)@❨p1❩ = p ∧ (⫰*[↓p1]f2) ⊚ f1 ≘ f.
161 /3 width=3 by after_fwd_tls, after_fwd_hd, conj/ qed-.
162
163 (* Properties on apply ******************************************************)
164
165 lemma compose_apply (f2) (f1) (i): f2@❨f1@❨i❩❩ = (f2∘f1)@❨i❩.
166 /4 width=6 by after_fwd_at, at_inv_total, sym_eq/ qed.