]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/ground_2/relocation/nstream_id.ma
lift functions and identity map
[helm.git] / matita / matita / contribs / lambdadelta / ground_2 / relocation / nstream_id.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/notation/functions/identity_0.ma".
16 include "ground_2/notation/relations/isidentity_1.ma".
17 include "ground_2/relocation/nstream_lift.ma".
18 include "ground_2/relocation/nstream_after.ma".
19
20 (* RELOCATION N-STREAM ******************************************************)
21
22 let corec id: nstream ≝ ↑id.
23
24 interpretation "identity (nstream)"
25    'Identity = (id).
26
27 definition isid: predicate nstream ≝ λt. t ≐ 𝐈𝐝.
28
29 interpretation "test for identity (trace)"
30    'IsIdentity t = (isid t).
31
32 (* Basic properties on id ***************************************************)
33
34 lemma id_unfold: 𝐈𝐝 = ↑𝐈𝐝.
35 >(stream_expand … (𝐈𝐝)) in ⊢ (??%?); normalize //
36 qed.
37
38 (* Basic properties on isid *************************************************)
39
40 lemma isid_id: 𝐈⦃𝐈𝐝⦄.
41 // qed.
42
43 lemma isid_push: ∀t. 𝐈⦃t⦄ → 𝐈⦃↑t⦄.
44 #t #H normalize >id_unfold /2 width=1 by eq_seq/
45 qed.
46
47 (* Basic inversion lemmas on isid *******************************************)
48
49 lemma isid_inv_seq: ∀t,a.  𝐈⦃a@t⦄ → 𝐈⦃t⦄ ∧ a = 0.
50 #t #a normalize >id_unfold in ⊢ (???%→?);
51 #H elim (eq_stream_inv_seq ????? H) -H /2 width=1 by conj/
52 qed-.
53
54 lemma isid_inv_push: ∀t. 𝐈⦃↑t⦄ → 𝐈⦃t⦄.
55 * #a #t #H elim (isid_inv_seq … H) -H //
56 qed-.
57
58 lemma isid_inv_next: ∀t. 𝐈⦃⫯t⦄ → ⊥.
59 * #a #t #H elim (isid_inv_seq … H) -H
60 #_ #H destruct
61 qed-.
62
63 (* inversion lemmas on at ***************************************************)
64
65 let corec id_inv_at: ∀t. (∀i. @⦃i, t⦄ ≡ i) → t ≐ 𝐈𝐝 ≝ ?.
66 * #a #t #Ht lapply (Ht 0)
67 #H lapply (at_inv_O1 … H) -H
68 #H0 >id_unfold @eq_seq
69 [ cases H0 -a //
70 | @id_inv_at -id_inv_at
71   #i lapply (Ht (⫯i)) -Ht cases H0 -a
72   #H elim (at_inv_SOx … H) -H //
73 ]
74 qed-.
75
76 lemma isid_inv_at: ∀i,t. 𝐈⦃t⦄ → @⦃i, t⦄ ≡ i.
77 #i elim i -i
78 [ * #a #t #H elim (isid_inv_seq … H) -H //
79 | #i #IH * #a #t #H elim (isid_inv_seq … H) -H
80   /3 width=1 by at_S1/
81 ]
82 qed-.
83
84 lemma isid_inv_at_mono: ∀t,i1,i2. 𝐈⦃t⦄ → @⦃i1, t⦄ ≡ i2 → i1 = i2.
85 /3 width=6 by isid_inv_at, at_mono/ qed-.
86
87 (* Properties on at *********************************************************)
88
89 lemma id_at: ∀i. @⦃i, 𝐈𝐝⦄ ≡ i.
90 /2 width=1 by isid_inv_at/ qed.
91
92 lemma isid_at: ∀t. (∀i. @⦃i, t⦄ ≡ i) → 𝐈⦃t⦄.
93 /2 width=1 by id_inv_at/ qed.
94
95 lemma isid_at_total: ∀t. (∀i1,i2. @⦃i1, t⦄ ≡ i2 → i1 = i2) → 𝐈⦃t⦄.
96 #t #Ht @isid_at
97 #i lapply (at_total i t)
98 #H >(Ht … H) in ⊢ (???%); -Ht //
99 qed.
100
101 (* Properties on after ******************************************************)
102
103 lemma after_isid_dx: ∀t2,t1,t. t2 ⊚ t1 ≡ t → t2 ≐ t → 𝐈⦃t1⦄.
104 #t2 #t1 #t #Ht #H2 @isid_at_total
105 #i1 #i2 #Hi12 elim (after_at1_fwd … Hi12 … Ht) -t1
106 /3 width=6 by at_inj, eq_stream_sym/
107 qed.
108
109 lemma after_isid_sn: ∀t2,t1,t. t2 ⊚ t1 ≡ t → t1 ≐ t → 𝐈⦃t2⦄.
110 #t2 #t1 #t #Ht #H1 @isid_at_total
111 #i2 #i #Hi2 lapply (at_total i2 t1)
112 #H0 lapply (at_increasing … H0)
113 #Ht1 lapply (after_fwd_at2 … (t1@❴i2❵) … H0 … Ht)
114 /3 width=7 by at_repl_back, at_mono, at_id_le/
115 qed.
116
117 (* Inversion lemmas on after ************************************************)
118
119 let corec isid_after_sn: ∀t1,t2. 𝐈⦃t1⦄ → t1 ⊚ t2 ≡ t2 ≝ ?.
120 * #a1 #t1 * * [ | #a2 ] #t2 #H cases (isid_inv_seq … H) -H
121 #Ht1 #H1
122 [ @(after_zero … H1) -H1 /2 width=1 by/
123 | @(after_skip … H1) -H1 /2 width=5 by/
124 ]
125 qed-.
126
127 let corec isid_after_dx: ∀t2,t1. 𝐈⦃t2⦄ → t1 ⊚ t2 ≡ t1 ≝ ?.
128 * #a2 #t2 * *
129 [ #t1 #H cases (isid_inv_seq … H) -H
130   #Ht2 #H2 @(after_zero … H2) -H2 /2 width=1 by/
131 | #a1 #t1 #H @(after_drop … a1 a1) /2 width=5 by/
132 ]
133 qed-.
134
135 lemma after_isid_inv_sn: ∀t1,t2,t. t1 ⊚ t2 ≡ t →  𝐈⦃t1⦄ → t2 ≐ t.
136 /3 width=4 by isid_after_sn, after_mono/
137 qed-.
138
139 lemma after_isid_inv_dx: ∀t1,t2,t. t1 ⊚ t2 ≡ t →  𝐈⦃t2⦄ → t1 ≐ t.
140 /3 width=4 by isid_after_dx, after_mono/
141 qed-.
142 (*
143 lemma after_inv_isid3: ∀t1,t2,t. t1 ⊚ t2 ≡ t → 𝐈⦃t⦄ → 𝐈⦃t1⦄ ∧ 𝐈⦃t2⦄.
144 qed-.
145 *)