]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/ground_2/relocation/nstream_id.ma
- ground_2: support for relocation updated
[helm.git] / matita / matita / contribs / lambdadelta / ground_2 / relocation / nstream_id.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/notation/functions/identity_0.ma".
16 include "ground_2/notation/relations/isidentity_1.ma".
17 include "ground_2/relocation/nstream_after.ma".
18
19 (* RELOCATION N-STREAM ******************************************************)
20
21 let corec id: rtmap ≝ ↑id.
22
23 interpretation "identity (nstream)"
24    'Identity = (id).
25
26 definition isid: predicate rtmap ≝ λf. f ≐ 𝐈𝐝.
27
28 interpretation "test for identity (trace)"
29    'IsIdentity f = (isid f).
30
31 (* Basic properties on id ***************************************************)
32
33 lemma id_unfold: 𝐈𝐝 = ↑𝐈𝐝.
34 >(stream_expand … (𝐈𝐝)) in ⊢ (??%?); normalize //
35 qed.
36
37 (* Basic properties on isid *************************************************)
38
39 lemma isid_eq_repl_back: eq_stream_repl_back … isid.
40 /2 width=3 by eq_stream_canc_sn/ qed-.
41
42 lemma isid_eq_repl_fwd: eq_stream_repl_fwd … isid.
43 /3 width=3 by isid_eq_repl_back, eq_stream_repl_sym/ qed-.
44
45 lemma isid_id: 𝐈⦃𝐈𝐝⦄.
46 // qed.
47
48 lemma isid_push: ∀f. 𝐈⦃f⦄ → 𝐈⦃↑f⦄.
49 #f #H normalize >id_unfold /2 width=1 by eq_seq/
50 qed.
51
52 (* Basic inversion lemmas on isid *******************************************)
53
54 lemma isid_inv_seq: ∀f,n.  𝐈⦃n@f⦄ → 𝐈⦃f⦄ ∧ n = 0.
55 #f #n normalize >id_unfold in ⊢ (???%→?);
56 #H elim (eq_stream_inv_seq ????? H) -H /2 width=1 by conj/
57 qed-.
58
59 lemma isid_inv_push: ∀f. 𝐈⦃↑f⦄ → 𝐈⦃f⦄.
60 * #n #f #H elim (isid_inv_seq … H) -H //
61 qed-.
62
63 lemma isid_inv_next: ∀f. 𝐈⦃⫯f⦄ → ⊥.
64 * #n #f #H elim (isid_inv_seq … H) -H
65 #_ #H destruct
66 qed-.
67
68 lemma isid_inv_gen: ∀f. 𝐈⦃f⦄ → ∃∃g. 𝐈⦃g⦄ & f = ↑g.
69 * #n #f #H elim (isid_inv_seq … H) -H
70 #Hf #H destruct /2 width=3 by ex2_intro/
71 qed-.
72
73 lemma isid_inv_eq_repl: ∀f1,f2. 𝐈⦃f1⦄ → 𝐈⦃f2⦄ → f1 ≐ f2.
74 /2 width=3 by eq_stream_canc_dx/ qed-.
75
76 (* inversion lemmas on at ***************************************************)
77
78 let corec id_inv_at: ∀f. (∀i. @⦃i, f⦄ ≡ i) → f ≐ 𝐈𝐝 ≝ ?.
79 * #n #f #Ht lapply (Ht 0)
80 #H lapply (at_inv_O1 … H) -H
81 #H0 >id_unfold @eq_seq
82 [ cases H0 -n //
83 | @id_inv_at -id_inv_at
84   #i lapply (Ht (⫯i)) -Ht cases H0 -n
85   #H elim (at_inv_SOx … H) -H //
86 ]
87 qed-.
88
89 lemma isid_inv_at: ∀i,f. 𝐈⦃f⦄ → @⦃i, f⦄ ≡ i.
90 #i elim i -i
91 [ * #n #f #H elim (isid_inv_seq … H) -H //
92 | #i #IH * #n #f #H elim (isid_inv_seq … H) -H
93   /3 width=1 by at_S1/
94 ]
95 qed-.
96
97 lemma isid_inv_at_mono: ∀f,i1,i2. 𝐈⦃f⦄ → @⦃i1, f⦄ ≡ i2 → i1 = i2.
98 /3 width=6 by isid_inv_at, at_mono/ qed-.
99
100 (* Properties on at *********************************************************)
101
102 lemma id_at: ∀i. @⦃i, 𝐈𝐝⦄ ≡ i.
103 /2 width=1 by isid_inv_at/ qed.
104
105 lemma isid_at: ∀f. (∀i. @⦃i, f⦄ ≡ i) → 𝐈⦃f⦄.
106 /2 width=1 by id_inv_at/ qed.
107
108 lemma isid_at_total: ∀f. (∀i1,i2. @⦃i1, f⦄ ≡ i2 → i1 = i2) → 𝐈⦃f⦄.
109 #f #Ht @isid_at
110 #i lapply (at_total i f)
111 #H >(Ht … H) in ⊢ (???%); -Ht //
112 qed.
113
114 (* Properties on after ******************************************************)
115
116 lemma after_isid_dx: ∀f2,f1,f. f2 ⊚ f1 ≡ f → f2 ≐ f → 𝐈⦃f1⦄.
117 #f2 #f1 #f #Ht #H2 @isid_at_total
118 #i1 #i2 #Hi12 elim (after_at1_fwd … Hi12 … Ht) -f1
119 /3 width=6 by at_inj, eq_stream_sym/
120 qed.
121
122 lemma after_isid_sn: ∀f2,f1,f. f2 ⊚ f1 ≡ f → f1 ≐ f → 𝐈⦃f2⦄.
123 #f2 #f1 #f #Ht #H1 @isid_at_total
124 #i2 #i #Hi2 lapply (at_total i2 f1)
125 #H0 lapply (at_increasing … H0)
126 #Ht1 lapply (after_fwd_at2 … (f1@❴i2❵) … H0 … Ht)
127 /3 width=7 by at_eq_repl_back, at_mono, at_id_le/
128 qed.
129
130 (* Inversion lemmas on after ************************************************)
131
132 let corec isid_after_sn: ∀f1,f2. 𝐈⦃f1⦄ → f1 ⊚ f2 ≡ f2 ≝ ?.
133 * #n1 #f1 * * [ | #n2 ] #f2 #H cases (isid_inv_seq … H) -H
134 /3 width=7 by after_push, after_refl/
135 qed-.
136
137 let corec isid_after_dx: ∀f2,f1. 𝐈⦃f2⦄ → f1 ⊚ f2 ≡ f1 ≝ ?.
138 * #n2 #f2 * *
139 [ #f1 #H cases (isid_inv_seq … H) -H
140   /3 width=7 by after_refl/
141 | #n1 #f1 #H @after_next [4,5: // |1,2: skip ] /2 width=1 by/
142 ]
143 qed-.
144
145 lemma after_isid_inv_sn: ∀f1,f2,f. f1 ⊚ f2 ≡ f →  𝐈⦃f1⦄ → f2 ≐ f.
146 /3 width=8 by isid_after_sn, after_mono/
147 qed-.
148
149 lemma after_isid_inv_dx: ∀f1,f2,f. f1 ⊚ f2 ≡ f →  𝐈⦃f2⦄ → f1 ≐ f.
150 /3 width=8 by isid_after_dx, after_mono/
151 qed-.
152 (*
153 lemma after_inv_isid3: ∀f1,f2,f. f1 ⊚ f2 ≡ f → 𝐈⦃t⦄ → 𝐈⦃t1⦄ ∧ 𝐈⦃t2⦄.
154 qed-.
155 *)