]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/ground_2/relocation/nstream_id.ma
- ground_2: relocation with nstream is now based on two basic functions (push and...
[helm.git] / matita / matita / contribs / lambdadelta / ground_2 / relocation / nstream_id.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/notation/functions/identity_0.ma".
16 include "ground_2/notation/relations/isidentity_1.ma".
17 include "ground_2/relocation/nstream_after.ma".
18
19 (* RELOCATION N-STREAM ******************************************************)
20
21 let corec id: rtmap ≝ ↑id.
22
23 interpretation "identity (nstream)"
24    'Identity = (id).
25
26 definition isid: predicate rtmap ≝ λf. f ≐ 𝐈𝐝.
27
28 interpretation "test for identity (trace)"
29    'IsIdentity f = (isid f).
30
31 (* Basic properties on id ***************************************************)
32
33 lemma id_unfold: 𝐈𝐝 = ↑𝐈𝐝.
34 >(stream_expand … (𝐈𝐝)) in ⊢ (??%?); normalize //
35 qed.
36
37 (* Basic properties on isid *************************************************)
38
39 lemma isid_id: 𝐈⦃𝐈𝐝⦄.
40 // qed.
41
42 lemma isid_push: ∀f. 𝐈⦃f⦄ → 𝐈⦃↑f⦄.
43 #f #H normalize >id_unfold /2 width=1 by eq_seq/
44 qed.
45
46 (* Basic inversion lemmas on isid *******************************************)
47
48 lemma isid_inv_seq: ∀f,n.  𝐈⦃n@f⦄ → 𝐈⦃f⦄ ∧ n = 0.
49 #f #n normalize >id_unfold in ⊢ (???%→?);
50 #H elim (eq_stream_inv_seq ????? H) -H /2 width=1 by conj/
51 qed-.
52
53 lemma isid_inv_push: ∀f. 𝐈⦃↑f⦄ → 𝐈⦃f⦄.
54 * #n #f #H elim (isid_inv_seq … H) -H //
55 qed-.
56
57 lemma isid_inv_next: ∀f. 𝐈⦃⫯f⦄ → ⊥.
58 * #n #f #H elim (isid_inv_seq … H) -H
59 #_ #H destruct
60 qed-.
61
62 (* inversion lemmas on at ***************************************************)
63
64 let corec id_inv_at: ∀f. (∀i. @⦃i, f⦄ ≡ i) → f ≐ 𝐈𝐝 ≝ ?.
65 * #n #f #Ht lapply (Ht 0)
66 #H lapply (at_inv_O1 … H) -H
67 #H0 >id_unfold @eq_seq
68 [ cases H0 -n //
69 | @id_inv_at -id_inv_at
70   #i lapply (Ht (⫯i)) -Ht cases H0 -n
71   #H elim (at_inv_SOx … H) -H //
72 ]
73 qed-.
74
75 lemma isid_inv_at: ∀i,f. 𝐈⦃f⦄ → @⦃i, f⦄ ≡ i.
76 #i elim i -i
77 [ * #n #f #H elim (isid_inv_seq … H) -H //
78 | #i #IH * #n #f #H elim (isid_inv_seq … H) -H
79   /3 width=1 by at_S1/
80 ]
81 qed-.
82
83 lemma isid_inv_at_mono: ∀f,i1,i2. 𝐈⦃f⦄ → @⦃i1, f⦄ ≡ i2 → i1 = i2.
84 /3 width=6 by isid_inv_at, at_mono/ qed-.
85
86 (* Properties on at *********************************************************)
87
88 lemma id_at: ∀i. @⦃i, 𝐈𝐝⦄ ≡ i.
89 /2 width=1 by isid_inv_at/ qed.
90
91 lemma isid_at: ∀f. (∀i. @⦃i, f⦄ ≡ i) → 𝐈⦃f⦄.
92 /2 width=1 by id_inv_at/ qed.
93
94 lemma isid_at_total: ∀f. (∀i1,i2. @⦃i1, f⦄ ≡ i2 → i1 = i2) → 𝐈⦃f⦄.
95 #f #Ht @isid_at
96 #i lapply (at_total i f)
97 #H >(Ht … H) in ⊢ (???%); -Ht //
98 qed.
99
100 (* Properties on after ******************************************************)
101
102 lemma after_isid_dx: ∀f2,f1,f. f2 ⊚ f1 ≡ f → f2 ≐ f → 𝐈⦃f1⦄.
103 #f2 #f1 #f #Ht #H2 @isid_at_total
104 #i1 #i2 #Hi12 elim (after_at1_fwd … Hi12 … Ht) -f1
105 /3 width=6 by at_inj, eq_stream_sym/
106 qed.
107
108 lemma after_isid_sn: ∀f2,f1,f. f2 ⊚ f1 ≡ f → f1 ≐ f → 𝐈⦃f2⦄.
109 #f2 #f1 #f #Ht #H1 @isid_at_total
110 #i2 #i #Hi2 lapply (at_total i2 f1)
111 #H0 lapply (at_increasing … H0)
112 #Ht1 lapply (after_fwd_at2 … (f1@❴i2❵) … H0 … Ht)
113 /3 width=7 by at_repl_back, at_mono, at_id_le/
114 qed.
115
116 (* Inversion lemmas on after ************************************************)
117
118 let corec isid_after_sn: ∀f1,f2. 𝐈⦃f1⦄ → f1 ⊚ f2 ≡ f2 ≝ ?.
119 * #n1 #f1 * * [ | #n2 ] #f2 #H cases (isid_inv_seq … H) -H
120 /3 width=7 by after_push, after_refl/
121 qed-.
122
123 let corec isid_after_dx: ∀f2,f1. 𝐈⦃f2⦄ → f1 ⊚ f2 ≡ f1 ≝ ?.
124 * #n2 #f2 * *
125 [ #f1 #H cases (isid_inv_seq … H) -H
126   /3 width=7 by after_refl/
127 | #n1 #f1 #H @after_next [4,5: // |1,2: skip ] /2 width=1 by/
128 ]
129 qed-.
130
131 lemma after_isid_inv_sn: ∀f1,f2,f. f1 ⊚ f2 ≡ f →  𝐈⦃f1⦄ → f2 ≐ f.
132 /3 width=4 by isid_after_sn, after_mono/
133 qed-.
134
135 lemma after_isid_inv_dx: ∀f1,f2,f. f1 ⊚ f2 ≡ f →  𝐈⦃f2⦄ → f1 ≐ f.
136 /3 width=4 by isid_after_dx, after_mono/
137 qed-.
138 (*
139 lemma after_inv_isid3: ∀f1,f2,f. f1 ⊚ f2 ≡ f → 𝐈⦃t⦄ → 𝐈⦃t1⦄ ∧ 𝐈⦃t2⦄.
140 qed-.
141 *)