]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/ground_2/relocation/nstream_istot.ma
update in ground_2, static_2, basic_2, apps_2, alpha_1
[helm.git] / matita / matita / contribs / lambdadelta / ground_2 / relocation / nstream_istot.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.tcs.unibo.it                            *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/notation/functions/apply_2.ma".
16 include "ground_2/relocation/nstream_eq.ma".
17 include "ground_2/relocation/rtmap_istot.ma".
18
19 (* RELOCATION N-STREAM ******************************************************)
20
21 rec definition apply (i: nat) on i: rtmap → nat ≝ ?.
22 * #n #f cases i -i
23 [ @n
24 | #i lapply (apply i f) -apply -i -f
25   #i @(↑(n+i))
26 ]
27 defined.
28
29 interpretation "functional application (nstream)"
30    'Apply f i = (apply i f).
31
32 (* Specific properties on at ************************************************)
33
34 lemma at_O1: ∀i2,f. @❪0, i2⨮f❫ ≘ i2.
35 #i2 elim i2 -i2 /2 width=5 by at_refl, at_next/
36 qed.
37
38 lemma at_S1: ∀n,f,i1,i2. @❪i1, f❫ ≘ i2 → @❪↑i1, n⨮f❫ ≘ ↑(n+i2).
39 #n elim n -n /3 width=7 by at_push, at_next/
40 qed.
41
42 lemma at_total: ∀i1,f. @❪i1, f❫ ≘ f@❨i1❩.
43 #i1 elim i1 -i1
44 [ * // | #i #IH * /3 width=1 by at_S1/ ]
45 qed.
46
47 lemma at_istot: ∀f. 𝐓❪f❫.
48 /2 width=2 by ex_intro/ qed.
49
50 lemma at_plus2: ∀f,i1,i,n,m. @❪i1, n⨮f❫ ≘ i → @❪i1, (m+n)⨮f❫ ≘ m+i.
51 #f #i1 #i #n #m #H elim m -m //
52 #m <plus_S1 /2 width=5 by at_next/ (**) (* full auto fails *)
53 qed.
54
55 (* Specific inversion lemmas on at ******************************************)
56
57 lemma at_inv_O1: ∀f,n,i2. @❪0, n⨮f❫ ≘ i2 → n = i2.
58 #f #n elim n -n /2 width=6 by at_inv_ppx/
59 #n #IH #i2 #H elim (at_inv_xnx … H) -H [2,3: // ]
60 #j2 #Hj * -i2 /3 width=1 by eq_f/
61 qed-.
62
63 lemma at_inv_S1: ∀f,n,j1,i2. @❪↑j1, n⨮f❫ ≘ i2 →
64                  ∃∃j2. @❪j1, f❫ ≘ j2 & ↑(n+j2) = i2.
65 #f #n elim n -n /2 width=5 by at_inv_npx/
66 #n #IH #j1 #i2 #H elim (at_inv_xnx … H) -H [2,3: // ]
67 #j2 #Hj * -i2 elim (IH … Hj) -IH -Hj
68 #i2 #Hi * -j2 /2 width=3 by ex2_intro/
69 qed-.
70
71 lemma at_inv_total: ∀f,i1,i2. @❪i1, f❫ ≘ i2 → f@❨i1❩ = i2.
72 /2 width=6 by at_mono/ qed-.
73
74 (* Spercific forward lemmas on at *******************************************)
75
76 lemma at_increasing_plus: ∀f,n,i1,i2. @❪i1, n⨮f❫ ≘ i2 → i1 + n ≤ i2.
77 #f #n *
78 [ #i2 #H <(at_inv_O1 … H) -i2 //
79 | #i1 #i2 #H elim (at_inv_S1 … H) -H
80   #j1 #Ht * -i2 /4 width=2 by at_increasing, monotonic_le_plus_r, le_S_S/
81 ]
82 qed-.
83
84 lemma at_fwd_id: ∀f,n,i. @❪i, n⨮f❫ ≘ i → 0 = n.
85 #f #n #i #H elim (at_fwd_id_ex … H) -H
86 #g #H elim (push_inv_seq_dx … H) -H //
87 qed-.
88
89 (* Basic properties *********************************************************)
90
91 lemma apply_O1: ∀n,f. (n⨮f)@❨0❩ = n.
92 // qed.
93
94 lemma apply_S1: ∀n,f,i. (n⨮f)@❨↑i❩ = ↑(n+f@❨i❩).
95 // qed.
96
97 lemma apply_eq_repl (i): eq_repl … (λf1,f2. f1@❨i❩ = f2@❨i❩).
98 #i elim i -i [2: #i #IH ] * #n1 #f1 * #n2 #f2 #H
99 elim (eq_inv_seq_aux … H) -H normalize //
100 #Hn #Hf /4 width=1 by eq_f2, eq_f/
101 qed.
102
103 lemma apply_S2: ∀f,i. (↑f)@❨i❩ = ↑(f@❨i❩).
104 * #n #f * //
105 qed.
106
107 (* Main inversion lemmas ****************************************************)
108
109 theorem apply_inj: ∀f,i1,i2,j. f@❨i1❩ = j → f@❨i2❩ = j → i1 = i2.
110 /2 width=4 by at_inj/ qed-.
111
112 corec theorem nstream_eq_inv_ext: ∀f1,f2. (∀i. f1@❨i❩ = f2@❨i❩) → f1 ≗ f2.
113 * #n1 #f1 * #n2 #f2 #Hf @eq_seq
114 [ @(Hf 0)
115 | @nstream_eq_inv_ext -nstream_eq_inv_ext #i
116   lapply (Hf 0) >apply_O1 >apply_O1 #H destruct
117   lapply (Hf (↑i)) >apply_S1 >apply_S1 #H
118   /3 width=2 by injective_plus_r, injective_S/
119 ]
120 qed-.