]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_eq.ma
update in ground_2, static_2, basic_2
[helm.git] / matita / matita / contribs / lambdadelta / ground_2 / relocation / rtmap_eq.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/xoa/ex_3_2.ma".
16 include "ground_2/notation/relations/ideq_2.ma".
17 include "ground_2/relocation/rtmap.ma".
18
19 (* RELOCATION MAP ***********************************************************)
20
21 coinductive eq: relation rtmap ≝
22 | eq_push: ∀f1,f2,g1,g2. eq f1 f2 → ⫯f1 = g1 → ⫯f2 = g2 → eq g1 g2
23 | eq_next: ∀f1,f2,g1,g2. eq f1 f2 → ↑f1 = g1 → ↑f2 = g2 → eq g1 g2
24 .
25
26 interpretation "extensional equivalence (rtmap)"
27    'IdEq f1 f2 = (eq f1 f2).
28
29 definition eq_repl (R:relation …) ≝
30                    ∀f1,f2. f1 ≡ f2 → R f1 f2.
31
32 definition eq_repl_back (R:predicate …) ≝
33                         ∀f1. R f1 → ∀f2. f1 ≡ f2 → R f2.
34
35 definition eq_repl_fwd (R:predicate …) ≝
36                        ∀f1. R f1 → ∀f2. f2 ≡ f1 → R f2.
37
38 (* Basic properties *********************************************************)
39
40 corec lemma eq_refl: reflexive … eq.
41 #f cases (pn_split f) *
42 #g #Hg [ @(eq_push … Hg Hg) | @(eq_next … Hg Hg) ] -Hg //
43 qed.
44
45 corec lemma eq_sym: symmetric … eq.
46 #f1 #f2 * -f1 -f2
47 #f1 #f2 #g1 #g2 #Hf #H1 #H2
48 [ @(eq_push … H2 H1) | @(eq_next … H2 H1) ] -g2 -g1 /2 width=1 by/
49 qed-.
50
51 lemma eq_repl_sym: ∀R. eq_repl_back R → eq_repl_fwd R.
52 /3 width=3 by eq_sym/ qed-.
53
54 (* Basic inversion lemmas ***************************************************)
55
56 lemma eq_inv_px: ∀g1,g2. g1 ≡ g2 → ∀f1. ⫯f1 = g1 →
57                  ∃∃f2. f1 ≡ f2 & ⫯f2 = g2.
58 #g1 #g2 * -g1 -g2
59 #f1 #f2 #g1 #g2 #Hf * * -g1 -g2
60 #x1 #H
61 [ lapply (injective_push … H) -H /2 width=3 by ex2_intro/
62 | elim (discr_push_next … H)
63 ]
64 qed-.
65
66 lemma eq_inv_nx: ∀g1,g2. g1 ≡ g2 → ∀f1. ↑f1 = g1 →
67                  ∃∃f2. f1 ≡ f2 & ↑f2 = g2.
68 #g1 #g2 * -g1 -g2
69 #f1 #f2 #g1 #g2 #Hf * * -g1 -g2
70 #x1 #H
71 [ elim (discr_next_push … H)
72 | lapply (injective_next … H) -H /2 width=3 by ex2_intro/
73 ]
74 qed-.
75
76 lemma eq_inv_xp: ∀g1,g2. g1 ≡ g2 → ∀f2. ⫯f2 = g2 →
77                  ∃∃f1. f1 ≡ f2 & ⫯f1 = g1.
78 #g1 #g2 * -g1 -g2
79 #f1 #f2 #g1 #g2 #Hf * * -g1 -g2
80 #x2 #H
81 [ lapply (injective_push … H) -H /2 width=3 by ex2_intro/
82 | elim (discr_push_next … H)
83 ]
84 qed-.
85
86 lemma eq_inv_xn: ∀g1,g2. g1 ≡ g2 → ∀f2. ↑f2 = g2 →
87                  ∃∃f1. f1 ≡ f2 & ↑f1 = g1.
88 #g1 #g2 * -g1 -g2
89 #f1 #f2 #g1 #g2 #Hf * * -g1 -g2
90 #x2 #H
91 [ elim (discr_next_push … H)
92 | lapply (injective_next … H) -H /2 width=3 by ex2_intro/
93 ]
94 qed-.
95
96 (* Advanced inversion lemmas ************************************************)
97
98 lemma eq_inv_pp: ∀g1,g2. g1 ≡ g2 → ∀f1,f2. ⫯f1 = g1 → ⫯f2 = g2 → f1 ≡ f2.
99 #g1 #g2 #H #f1 #f2 #H1 elim (eq_inv_px … H … H1) -g1
100 #x2 #Hx2 * -g2
101 #H lapply (injective_push … H) -H //
102 qed-.
103
104 lemma eq_inv_nn: ∀g1,g2. g1 ≡ g2 → ∀f1,f2. ↑f1 = g1 → ↑f2 = g2 → f1 ≡ f2.
105 #g1 #g2 #H #f1 #f2 #H1 elim (eq_inv_nx … H … H1) -g1
106 #x2 #Hx2 * -g2
107 #H lapply (injective_next … H) -H //
108 qed-.
109
110 lemma eq_inv_pn: ∀g1,g2. g1 ≡ g2 → ∀f1,f2. ⫯f1 = g1 → ↑f2 = g2 → ⊥.
111 #g1 #g2 #H #f1 #f2 #H1 elim (eq_inv_px … H … H1) -g1
112 #x2 #Hx2 * -g2
113 #H elim (discr_next_push … H)
114 qed-.
115
116 lemma eq_inv_np: ∀g1,g2. g1 ≡ g2 → ∀f1,f2. ↑f1 = g1 → ⫯f2 = g2 → ⊥.
117 #g1 #g2 #H #f1 #f2 #H1 elim (eq_inv_nx … H … H1) -g1
118 #x2 #Hx2 * -g2
119 #H elim (discr_push_next … H)
120 qed-.
121
122 lemma eq_inv_gen: ∀f1,f2. f1 ≡ f2 →
123                   (∃∃g1,g2. g1 ≡ g2 & ⫯g1 = f1 & ⫯g2 = f2) ∨
124                   ∃∃g1,g2. g1 ≡ g2 & ↑g1 = f1 & ↑g2 = f2.
125 #f1 elim (pn_split f1) * #g1 #H1 #f2 #Hf
126 [ elim (eq_inv_px … Hf … H1) -Hf /3 width=5 by or_introl, ex3_2_intro/
127 | elim (eq_inv_nx … Hf … H1) -Hf /3 width=5 by or_intror, ex3_2_intro/
128 ]
129 qed-.
130
131 (* Main properties **********************************************************)
132
133 corec theorem eq_trans: Transitive … eq.
134 #f1 #f * -f1 -f
135 #f1 #f #g1 #g #Hf1 #H1 #H #f2 #Hf2
136 [ cases (eq_inv_px … Hf2 … H) | cases (eq_inv_nx … Hf2 … H) ] -g
137 /3 width=5 by eq_push, eq_next/
138 qed-.
139
140 theorem eq_canc_sn: ∀f2. eq_repl_back (λf. f ≡ f2).
141 /3 width=3 by eq_trans, eq_sym/ qed-.
142
143 theorem eq_canc_dx: ∀f1. eq_repl_fwd (λf. f1 ≡ f).
144 /3 width=3 by eq_trans, eq_sym/ qed-.