]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/ground_2/ynat/ynat_plus.ma
38b9ddf707f1920eeb1de9da13c139c20f63b625
[helm.git] / matita / matita / contribs / lambdadelta / ground_2 / ynat / ynat_plus.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2/ynat/ynat_lt.ma".
16
17 (* NATURAL NUMBERS WITH INFINITY ********************************************)
18
19 (* addition *)
20 definition yplus: ynat → ynat → ynat ≝ λx,y. match y with
21 [ yinj n ⇒ ysucc^n x
22 | Y      ⇒ Y
23 ].
24
25 interpretation "ynat plus" 'plus x y = (yplus x y).
26
27 lemma yplus_O2: ∀m:ynat. m + 0 = m.
28 // qed.
29
30 lemma yplus_S2: ∀m:ynat. ∀n. m + S n = ↑(m + n).
31 // qed.
32
33 lemma yplus_Y2: ∀m:ynat. m + (∞) = ∞.
34 // qed.
35
36 (* Properties on successor **************************************************)
37
38 lemma yplus_succ2: ∀m,n. m + ↑n = ↑(m + n).
39 #m * //
40 qed.
41
42 lemma yplus_succ1: ∀m,n. ↑m + n = ↑(m + n).
43 #m * // #n elim n -n //
44 qed.
45
46 lemma yplus_succ_swap: ∀m,n. m + ↑n = ↑m + n.
47 // qed.
48
49 lemma yplus_SO2: ∀m. m + 1 = ↑m.
50 * //
51 qed.
52
53 (* Basic properties *********************************************************)
54
55 lemma yplus_inj: ∀n,m. yinj m + yinj n = yinj (m + n).
56 #n elim n -n //
57 #n #IHn #m >(yplus_succ2 ? n) >IHn -IHn
58 <plus_n_Sm //
59 qed.
60
61 lemma yplus_Y1: ∀m. ∞ + m = ∞.
62 * // #m elim m -m //
63 qed.
64
65 lemma yplus_comm: commutative … yplus.
66 * [ #m ] * [1,3: #n ] //
67 qed.
68
69 lemma yplus_assoc: associative … yplus.
70 #x #y * // #z cases y -y
71 [ #y >yplus_inj whd in ⊢ (??%%); <iter_plus //
72 | >yplus_Y1 //
73 ]
74 qed.
75
76 lemma yplus_O1: ∀n:ynat. 0 + n = n.
77 #n >yplus_comm // qed.
78
79 lemma yplus_comm_23: ∀x,y,z. x + z + y = x + y + z.
80 #x #y #z >yplus_assoc //
81 qed.
82
83 lemma yplus_comm_24: ∀x1,x2,x3,x4. x1 + x4 + x3 + x2 = x1 + x2 + x3 + x4.
84 #x1 #x2 #x3 #x4
85 >yplus_assoc >yplus_assoc >yplus_assoc >yplus_assoc
86 /2 width=1 by eq_f2/
87 qed.
88
89 lemma yplus_assoc_23: ∀x1,x2,x3,x4. x1 + x2 + (x3 + x4) = x1 + (x2 + x3) + x4.
90 #x1 #x2 #x3 #x4 >yplus_assoc >yplus_assoc
91 /2 width=1 by eq_f2/
92 qed.
93
94 (* Inversion lemmas on successor *********************************************)
95
96 lemma yplus_inv_succ_lt_dx: ∀x,y,z:ynat. 0 < y → x + y = ↑z → x + ↓y = z.
97 #x #y #z #H <(ylt_inv_O1 y) // >yplus_succ2
98 /2 width=1 by ysucc_inv_inj/
99 qed-.
100
101 lemma yplus_inv_succ_lt_sn: ∀x,y,z:ynat. 0 < x → x + y = ↑z → ↓x + y = z.
102 #x #y #z #H <(ylt_inv_O1 x) // >yplus_succ1
103 /2 width=1 by ysucc_inv_inj/
104
105 qed-.
106
107 (* Inversion lemmas on order ************************************************)
108
109 lemma yle_inv_plus_dx: ∀x,y. x ≤ y → ∃z. x + z = y.
110 #x #y #H elim H -x -y /2 width=2 by ex_intro/
111 #m #n #H @(ex_intro … (yinj (n-m))) (**) (* explicit constructor *)
112 /3 width=1 by plus_minus, eq_f/
113 qed-.
114
115 lemma yle_inv_plus_sn: ∀x,y. x ≤ y → ∃z. z + x = y.
116 #x #y #H elim (yle_inv_plus_dx … H) -H
117 /2 width=2 by ex_intro/
118 qed-.
119
120 (* Basic inversion lemmas ***************************************************)
121
122 lemma yplus_inv_inj: ∀z,y,x. x + y = yinj z →
123                      ∃∃m,n. m + n = z & x = yinj m & y = yinj n.
124 #z * [2: normalize #x #H destruct ]
125 #y * [2: >yplus_Y1 #H destruct ]
126 /3 width=5 by yinj_inj, ex3_2_intro/
127 qed-.
128
129 lemma yplus_inv_O: ∀x,y:ynat. x + y = 0 → x = 0 ∧ y = 0.
130 #x #y #H elim (yplus_inv_inj … H) -H
131 #m * /2 width=1 by conj/ #n <plus_n_Sm #H destruct
132 qed-.
133
134 lemma discr_yplus_xy_x: ∀x,y. x + y = x → x = ∞ ∨ y = 0.
135 * /2 width=1 by or_introl/
136 #x elim x -x /2 width=1 by or_intror/
137 #x #IHx * [2: >yplus_Y2 #H destruct ]
138 #y <ysucc_inj >yplus_succ1 #H
139 lapply (ysucc_inv_inj … H) -H #H
140 elim (IHx … H) -IHx -H /2 width=1 by or_introl, or_intror/
141 qed-.
142
143 lemma discr_yplus_x_xy: ∀x,y. x = x + y → x = ∞ ∨ y = 0.
144 /2 width=1 by discr_yplus_xy_x/ qed-.
145
146 lemma yplus_inv_monotonic_dx_inj: ∀z,x,y. x + yinj z = y + yinj z → x = y.
147 #z @(nat_ind_plus … z) -z /3 width=2 by ysucc_inv_inj/
148 qed-.
149
150 lemma yplus_inv_monotonic_dx: ∀z,x,y. z < ∞ → x + z = y + z → x = y.
151 #z #x #y #H elim (ylt_inv_Y2 … H) -H /2 width=2 by yplus_inv_monotonic_dx_inj/
152 qed-.
153
154 lemma yplus_inv_Y2: ∀x,y. x + y = ∞ → x = ∞ ∨ y = ∞.
155 * /2 width=1 by or_introl/ #x * // #y >yplus_inj #H destruct
156 qed-.
157
158 lemma yplus_inv_monotonic_23: ∀z,x1,x2,y1,y2. z < ∞ →
159                               x1 + z + y1 = x2 + z + y2 → x1 + y1 = x2 + y2.
160 #z #x1 #x2 #y1 #y2 #Hz #H @(yplus_inv_monotonic_dx z) //
161 >yplus_comm_23 >H -H //
162 qed-.
163
164 (* Inversion lemmas on strict_order *****************************************)
165
166 lemma ylt_inv_plus_Y: ∀x,y. x + y < ∞ → x < ∞ ∧ y < ∞.
167 #x #y #H elim (ylt_inv_Y2 … H) -H
168 #z #H elim (yplus_inv_inj … H) -H /2 width=1 by conj/
169 qed-.
170
171 lemma ylt_inv_plus_sn: ∀x,y. x < y → ∃∃z. ↑z + x = y & x < ∞.
172 #x #y #H elim (ylt_inv_le … H) -H
173 #Hx #H elim (yle_inv_plus_sn … H) -H
174 /2 width=2 by ex2_intro/
175 qed-.
176
177 lemma ylt_inv_plus_dx: ∀x,y. x < y → ∃∃z. x + ↑z = y & x < ∞.
178 #x #y #H elim (ylt_inv_plus_sn … H) -H
179 #z >yplus_comm /2 width=2 by ex2_intro/
180 qed-.
181
182 (* Properties on order ******************************************************)
183
184 lemma yle_plus_dx2: ∀n,m. n ≤ m + n.
185 * //
186 #n elim n -n //
187 #n #IHn #m >(yplus_succ2 ? n) @(yle_succ n) // (**) (* full auto fails *)
188 qed.
189
190 lemma yle_plus_dx1: ∀n,m. m ≤ m + n.
191 // qed.
192
193 lemma yle_plus_dx1_trans: ∀x,z. z ≤ x → ∀y. z ≤ x + y.
194 /2 width=3 by yle_trans/ qed.
195
196 lemma yle_plus_dx2_trans: ∀y,z. z ≤ y → ∀x. z ≤ x + y.
197 /2 width=3 by yle_trans/ qed.
198
199 lemma monotonic_yle_plus_dx: ∀x,y. x ≤ y → ∀z. x + z ≤ y + z.
200 #x #y #Hxy * //
201 #z elim z -z /3 width=1 by yle_succ/
202 qed.
203
204 lemma monotonic_yle_plus_sn: ∀x,y. x ≤ y → ∀z. z + x ≤ z + y.
205 /2 width=1 by monotonic_yle_plus_dx/ qed.
206
207 lemma monotonic_yle_plus: ∀x1,y1. x1 ≤ y1 → ∀x2,y2. x2 ≤ y2 →
208                           x1 + x2 ≤ y1 + y2.
209 /3 width=3 by monotonic_yle_plus_dx, monotonic_yle_plus_sn, yle_trans/ qed.
210
211 lemma ylt_plus_Y: ∀x,y. x < ∞ → y < ∞ → x + y < ∞.
212 #x #y #Hx elim (ylt_inv_Y2 … Hx) -Hx
213 #m #Hm #Hy elim (ylt_inv_Y2 … Hy) -Hy //
214 qed.
215
216 (* Forward lemmas on order **************************************************)
217
218 lemma yle_fwd_plus_sn2: ∀x,y,z. x + y ≤ z → y ≤ z.
219 /2 width=3 by yle_trans/ qed-.
220
221 lemma yle_fwd_plus_sn1: ∀x,y,z. x + y ≤ z → x ≤ z.
222 /2 width=3 by yle_trans/ qed-.
223
224 lemma yle_inv_monotonic_plus_dx_inj: ∀x,y:ynat.∀z:nat. x + z ≤ y + z → x ≤ y.
225 #x #y #z elim z -z /3 width=1 by yle_inv_succ/
226 qed-.
227
228 lemma yle_inv_monotonic_plus_sn_inj: ∀x,y:ynat.∀z:nat. z + x ≤ z + y → x ≤ y.
229 /2 width=2 by yle_inv_monotonic_plus_dx_inj/ qed-.
230
231 lemma yle_inv_monotonic_plus_dx: ∀x,y,z. z < ∞ → x + z ≤ y + z → x ≤ y.
232 #x #y #z #Hz elim (ylt_inv_Y2 … Hz) -Hz #m #H destruct
233 /2 width=2 by yle_inv_monotonic_plus_sn_inj/
234 qed-.
235
236 lemma yle_inv_monotonic_plus_sn: ∀x,y,z. z < ∞ → z + x ≤ z + y → x ≤ y.
237 /2 width=3 by yle_inv_monotonic_plus_dx/ qed-.
238
239 lemma yle_fwd_plus_ge: ∀m1,m2:nat. m2 ≤ m1 → ∀n1,n2:ynat. m1 + n1 ≤ m2 + n2 → n1 ≤ n2.
240 #m1 #m2 #Hm12 #n1 #n2 #H
241 lapply (monotonic_yle_plus … Hm12 … H) -Hm12 -H
242 /2 width=2 by yle_inv_monotonic_plus_sn_inj/
243 qed-.
244
245 lemma yle_fwd_plus_ge_inj: ∀m1:nat. ∀m2,n1,n2:ynat. m2 ≤ m1 → m1 + n1 ≤ m2 + n2 → n1 ≤ n2.
246 #m2 #m1 #n1 #n2 #H elim (yle_inv_inj2 … H) -H
247 #x #H0 #H destruct /3 width=4 by yle_fwd_plus_ge, yle_inj/
248 qed-.
249
250 lemma yle_fwd_plus_yge: ∀n2,m1:ynat. ∀n1,m2:nat. m2 ≤ m1 → m1 + n1 ≤ m2 + n2 → n1 ≤ n2.
251 * // #n2 * /2 width=4 by yle_fwd_plus_ge_inj/
252 qed-.
253
254 (* Properties on strict order ***********************************************)
255
256 lemma ylt_plus_dx1_trans: ∀x,z. z < x → ∀y. z < x + y.
257 /2 width=3 by ylt_yle_trans/ qed.
258
259 lemma ylt_plus_dx2_trans: ∀y,z. z < y → ∀x. z < x + y.
260 /2 width=3 by ylt_yle_trans/ qed.
261
262 lemma monotonic_ylt_plus_dx_inj: ∀x,y. x < y → ∀z:nat. x + yinj z < y + yinj z.
263 #x #y #Hxy #z elim z -z /3 width=1 by ylt_succ/
264 qed.
265
266 lemma monotonic_ylt_plus_sn_inj: ∀x,y. x < y → ∀z:nat. yinj z + x < yinj z + y.
267 /2 width=1 by monotonic_ylt_plus_dx_inj/ qed.
268
269 lemma monotonic_ylt_plus_dx: ∀x,y. x < y → ∀z. z < ∞ → x + z < y + z.
270 #x #y #Hxy #z #Hz elim (ylt_inv_Y2 … Hz) -Hz
271 #m #H destruct /2 width=1 by monotonic_ylt_plus_dx_inj/
272 qed.
273
274 lemma monotonic_ylt_plus_sn: ∀x,y. x < y → ∀z. z < ∞ → z + x < z + y.
275 /2 width=1 by monotonic_ylt_plus_dx/ qed.
276
277 lemma monotonic_ylt_plus_inj: ∀m1,m2. m1 < m2 → ∀n1,n2. yinj n1 ≤ n2 → m1 + n1 < m2 + n2.
278 /3 width=3 by monotonic_ylt_plus_sn_inj, monotonic_yle_plus_sn, ylt_yle_trans/
279 qed.
280
281 lemma monotonic_ylt_plus: ∀m1,m2. m1 < m2 → ∀n1. n1 < ∞ → ∀n2. n1 ≤ n2 → m1 + n1 < m2 + n2.
282 #m1 #m2 #Hm12 #n1 #H elim (ylt_inv_Y2 … H) -H #m #H destruct /2 width=1 by monotonic_ylt_plus_inj/
283 qed.
284
285 (* Forward lemmas on strict order *******************************************)
286
287 lemma ylt_inv_monotonic_plus_dx: ∀x,y,z. x + z < y + z → x < y.
288 * [2: #y #z >yplus_comm #H elim (ylt_inv_Y1 … H) ]
289 #x * // #y * [2: #H elim (ylt_inv_Y1 … H) ]
290 /4 width=3 by ylt_inv_inj, ylt_inj, lt_plus_to_lt_l/
291 qed-.
292
293 lemma ylt_fwd_plus_ge: ∀m1,m2. m2 ≤ m1 → ∀n1,n2. m1 + n1 < m2 + n2 → n1 < n2.
294 #m1 #m2 #Hm12 #n1 #n2 #H elim (ylt_fwd_gen … H)
295 #x #H0 elim (yplus_inv_inj … H0) -H0
296 #y #z #_ #H2 #H3 destruct -x
297 elim (yle_inv_inj2 … Hm12)
298 #x #_ #H0 destruct
299 lapply (monotonic_ylt_plus … H … Hm12) -H -Hm12
300 /2 width=2 by ylt_inv_monotonic_plus_dx/
301 qed-.
302
303 (* Properties on predeccessor ***********************************************)
304
305 lemma yplus_pred1: ∀x,y:ynat. 0 < x → ↓x + y = ↓(x+y).
306 #x * // #y elim y -y // #y #IH #Hx
307 >yplus_S2 >yplus_S2 >IH -IH // >ylt_inv_O1
308 /2 width=1 by ylt_plus_dx1_trans/
309 qed-.
310
311 lemma yplus_pred2: ∀x,y:ynat. 0 < y → x + ↓y = ↓(x+y).
312 /2 width=1 by yplus_pred1/ qed-.