]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/ground_2A/ynat/ynat_plus.ma
update in lambdadelta
[helm.git] / matita / matita / contribs / lambdadelta / ground_2A / ynat / ynat_plus.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "ground_2A/ynat/ynat_minus.ma".
16
17 (* NATURAL NUMBERS WITH INFINITY ********************************************)
18
19 (* addition *)
20 definition yplus: ynat → ynat → ynat ≝ λx,y. match y with
21 [ yinj n ⇒ ysucc^n x
22 | Y      ⇒ Y
23 ].
24
25 interpretation "ynat plus" 'plus x y = (yplus x y).
26
27 (* Properties on successor **************************************************)
28
29 lemma yplus_succ2: ∀m,n. m + ⫯n = ⫯(m + n).
30 #m * //
31 qed.
32
33 lemma yplus_succ1: ∀m,n. ⫯m + n = ⫯(m + n).
34 #m * normalize //
35 qed.
36
37 lemma yplus_succ_swap: ∀m,n. m + ⫯n = ⫯m + n.
38 // qed.
39
40 lemma yplus_SO2: ∀m. m + 1 = ⫯m.
41 * //
42 qed.
43
44 (* Basic properties *********************************************************)
45
46 lemma yplus_inj: ∀n,m. yinj m + yinj n = yinj (m + n).
47 #n elim n -n [ normalize // ]
48 #n #IHn #m >(yplus_succ2 ? n) >IHn -IHn
49 <plus_n_Sm //
50 qed.
51
52 lemma yplus_Y1: ∀m. ∞ + m = ∞.
53 * normalize //
54 qed.
55
56 lemma yplus_comm: commutative … yplus.
57 * [ #m ] * [1,3: #n ] //
58 normalize >ysucc_iter_Y //
59 qed.
60
61 lemma yplus_assoc: associative … yplus.
62 #x #y * // #z cases y -y
63 [ #y >yplus_inj whd in ⊢ (??%%); <iter_plus //
64 | >yplus_Y1 //
65 ]
66 qed.
67
68 lemma yplus_O1: ∀n:ynat. 0 + n = n.
69 #n >yplus_comm // qed.
70
71 (* Basic inversion lemmas ***************************************************)
72
73 lemma yplus_inv_inj: ∀z,y,x. x + y = yinj z →
74                      ∃∃m,n. m + n = z & x = yinj m & y = yinj n.
75 #z * [2: normalize #x #H destruct ]
76 #y * [2: >yplus_Y1 #H destruct ]
77 /3 width=5 by yinj_inj, ex3_2_intro/
78 qed-.
79
80 (* Properties on order ******************************************************)
81
82 lemma yle_plus_dx2: ∀n,m. n ≤ m + n.
83 * //
84 #n elim n -n //
85 #n #IHn #m >(yplus_succ2 ? n) @(yle_succ n) // (**) (* full auto fails *)
86 qed.
87
88 lemma yle_plus_dx1: ∀n,m. m ≤ m + n.
89 // qed.
90
91 lemma yle_plus_dx1_trans: ∀x,z. z ≤ x → ∀y. z ≤ x + y.
92 /2 width=3 by yle_trans/ qed.
93
94 lemma yle_plus_dx2_trans: ∀y,z. z ≤ y → ∀x. z ≤ x + y.
95 /2 width=3 by yle_trans/ qed.
96
97 lemma monotonic_yle_plus_dx: ∀x,y. x ≤ y → ∀z. x + z ≤ y + z.
98 #x #y #Hxy * //
99 #z elim z -z /3 width=1 by yle_succ/
100 qed.
101
102 lemma monotonic_yle_plus_sn: ∀x,y. x ≤ y → ∀z. z + x ≤ z + y.
103 /2 width=1 by monotonic_yle_plus_dx/ qed.
104
105 lemma monotonic_yle_plus: ∀x1,y1. x1 ≤ y1 → ∀x2,y2. x2 ≤ y2 →
106                           x1 + x2 ≤ y1 + y2.
107 /3 width=3 by monotonic_yle_plus_dx, yle_trans/ qed.
108
109 (* Forward lemmas on order **************************************************)
110
111 lemma yle_fwd_plus_sn2: ∀x,y,z. x + y ≤ z → y ≤ z.
112 /2 width=3 by yle_trans/ qed-.
113
114 lemma yle_fwd_plus_sn1: ∀x,y,z. x + y ≤ z → x ≤ z.
115 /2 width=3 by yle_trans/ qed-.
116
117 lemma yle_inv_monotonic_plus_dx: ∀x,y:ynat.∀z:nat. x + z ≤ y + z → x ≤ y.
118 #x #y #z elim z -z /3 width=1 by yle_inv_succ/
119 qed-.
120
121 lemma yle_inv_monotonic_plus_sn: ∀x,y:ynat.∀z:nat. z + x ≤ z + y → x ≤ y.
122 /2 width=2 by yle_inv_monotonic_plus_dx/ qed-.
123
124 lemma yle_fwd_plus_ge: ∀m1,m2:nat. m2 ≤ m1 → ∀n1,n2:ynat. m1 + n1 ≤ m2 + n2 → n1 ≤ n2.
125 #m1 #m2 #Hm12 #n1 #n2 #H
126 lapply (monotonic_yle_plus … Hm12 … H) -Hm12 -H
127 /2 width=2 by yle_inv_monotonic_plus_sn/
128 qed-.
129
130 lemma yle_fwd_plus_ge_inj: ∀m1:nat. ∀m2,n1,n2:ynat. m2 ≤ m1 → m1 + n1 ≤ m2 + n2 → n1 ≤ n2.
131 #m2 #m1 #n1 #n2 #H elim (yle_inv_inj2 … H) -H
132 #x #H0 #H destruct /3 width=4 by yle_fwd_plus_ge, yle_inj/
133 qed-.
134
135 (* Forward lemmas on strict order *******************************************)
136
137 lemma ylt_inv_monotonic_plus_dx: ∀x,y,z. x + z < y + z → x < y.
138 * [2: #y #z >yplus_comm #H elim (ylt_inv_Y1 … H) ]
139 #x * // #y * [2: #H elim (ylt_inv_Y1 … H) ]
140 /4 width=3 by ylt_inv_inj, ylt_inj, lt_plus_to_lt_l/
141 qed-.
142
143 (* Properties on strict order ***********************************************)
144
145 lemma ylt_plus_dx1_trans: ∀x,z. z < x → ∀y. z < x + yinj y.
146 /2 width=3 by ylt_yle_trans/ qed.
147
148 lemma ylt_plus_dx2_trans: ∀y,z. z < y → ∀x. z < yinj x + y.
149 /2 width=3 by ylt_yle_trans/ qed.
150
151 lemma monotonic_ylt_plus_dx: ∀x,y. x < y → ∀z:nat. x + yinj z < y + yinj z.
152 #x #y #Hxy #z elim z -z /3 width=1 by ylt_succ/
153 qed.
154
155 lemma monotonic_ylt_plus_sn: ∀x,y. x < y → ∀z:nat. yinj z + x < yinj z + y.
156 /2 width=1 by monotonic_ylt_plus_dx/ qed.
157
158 (* Properties on minus ******************************************************)
159
160 lemma yplus_minus_inj: ∀m:ynat. ∀n:nat. m + n - n = m.
161 #m #n elim n -n //
162 #n #IHn >(yplus_succ2 m n) >(yminus_succ … n) //
163 qed.
164
165 lemma yplus_minus: ∀m,n. m + n - n ≤ m.
166 #m * //
167 qed.
168
169 (* Forward lemmas on minus **************************************************)
170
171 lemma yle_plus1_to_minus_inj2: ∀x,z:ynat. ∀y:nat. x + y ≤ z → x ≤ z - y.
172 /2 width=1 by monotonic_yle_minus_dx/ qed-.
173
174 lemma yle_plus1_to_minus_inj1: ∀x,z:ynat. ∀y:nat. y + x ≤ z → x ≤ z - y.
175 /2 width=1 by yle_plus1_to_minus_inj2/ qed-.
176
177 lemma yle_plus2_to_minus_inj2: ∀x,y:ynat. ∀z:nat. x ≤ y + z → x - z ≤ y.
178 /2 width=1 by monotonic_yle_minus_dx/ qed-.
179
180 lemma yle_plus2_to_minus_inj1: ∀x,y:ynat. ∀z:nat. x ≤ z + y → x - z ≤ y.
181 /2 width=1 by yle_plus2_to_minus_inj2/ qed-.
182
183 lemma yplus_minus_assoc_inj: ∀x:nat. ∀y,z:ynat. x ≤ y → z + (y - x) = z + y - x.
184 #x *
185 [ #y * // #z >yminus_inj >yplus_inj >yplus_inj
186   /4 width=1 by yle_inv_inj, plus_minus, eq_f/
187 | >yminus_Y_inj //
188 ]
189 qed-.
190
191 lemma yplus_minus_comm_inj: ∀y:nat. ∀x,z:ynat. y ≤ x → x + z - y = x - y + z.
192 #y * // #x * //
193 #z #Hxy >yplus_inj >yminus_inj <plus_minus
194 /2 width=1 by yle_inv_inj/
195 qed-.
196
197 (* Inversion lemmas on minus ************************************************)
198
199 lemma yle_inv_plus_inj2: ∀x,z:ynat. ∀y:nat. x + y ≤ z → x ≤ z - y ∧ y ≤ z.
200 /3 width=3 by yle_plus1_to_minus_inj2, yle_trans, conj/ qed-.
201
202 lemma yle_inv_plus_inj1: ∀x,z:ynat. ∀y:nat. y + x ≤ z → x ≤ z - y ∧ y ≤ z.
203 /2 width=1 by yle_inv_plus_inj2/ qed-.