]> matita.cs.unibo.it Git - helm.git/blob - weblib/tutorial/chapter1.ma
b21fd3e1787add792e06acdb24dbf62c14dba2b0
[helm.git] / weblib / tutorial / chapter1.ma
1 (*
2 This is an interactive tutorial. To let you interact on line with the system, 
3 you must first of all register yourself.
4
5 Before starting, let us briefly explain the meaning of the menu buttons. 
6 With the Advance and Retract buttons you respectively perform and undo single 
7 computational steps. Each step consists in reading a user command, and processing
8 it. The part of the user input file (called script) already executed by the 
9 system will be colored, and will not be editable any more. The advance bottom 
10 will also automatically advance the focus of the window, but you can inspect the 
11 whole file using the scroll bars, as usual. Comments are skipped.
12 Try to advance and retract a few steps, to get the feeling of the system. You can 
13 also come back here by using the top button, that takes you at the beginning of 
14 a file. The play button is meant to process the script up to a position 
15 previously selected by the user; the bottom button execute the whole script. 
16 That's it: we are\ 5span style="font-family: Verdana,sans-serif;"\ 6 \ 5/span\ 6now ready to start.
17
18 The first thing to say is that in a system like Matita's very few things are 
19 built-in: not even booleans or logical connectives. The main philosophy of the 
20 system is to let you define your own data-types and functions using a powerful 
21 computational mechanism based on the declaration of inductive types. 
22
23 Let us start this tutorial with a simple example based on the following well 
24 known problem.
25
26 \ 5h2 class="section"\ 6The goat, the wolf and the cabbage\ 5/h2\ 6
27 A farmer need to transfer a goat, a wolf and a cabbage across a river, but there
28 is only one place available on his boat. Furthermore, the goat will eat the 
29 cabbage if they are left alone on the same bank, and similarly the wolf will eat
30 the goat. The problem consists in bringing all three items safely across the 
31 river. 
32
33 Our first data type defines the two banks of the river, which will be named east
34 and west. It is a simple example of enumerated type, defined by explicitly 
35 declaring all its elements. The type itself is called "bank".
36 Before giving its definition we "include" the file "logic.ma" that contains a 
37 few preliminary notions not worth discussing for the moment.
38 *)
39
40 include "basics/logic.ma".
41
42 inductive bank: Type[0] ≝
43 | east : bank 
44 | west : bank.
45
46 (* We can now define a simple function computing, for each bank of the river, the
47 opposite one. *)
48
49 definition opposite ≝ λs.
50 match s with
51   [ east ⇒ \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6
52   | west ⇒ \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6
53   ].
54
55 (* Functions are live entities, and can be actually computed. To check this, let
56 us state the property that the opposite bank of east is west; every lemma needs a 
57 name for further reference, and we call it "east_to_west". *)
58  
59 lemma east_to_west : \ 5a href="cic:/matita/tutorial/chapter1/opposite.def(1)"\ 6opposite\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6.
60
61 (* If you stop the execution here you will see a new window on the  right side
62 of the screen: it is the goal window, providing a sequent like representation of
63 the form
64
65 B1
66 B2
67 ....
68 Bk
69 -----------------------
70 A
71
72 for each open goal remaining to be solved. A is the conclusion of the goal and 
73 B1, ..., Bk is its context, that is the set of current hypothesis and type 
74 declarations. In this case, we have only one goal, and its context is empty. 
75 The proof proceeds by typing commands to the system. In this case, we
76 want to evaluate the function, that can be done by invoking the  "normalize"
77 command:
78 *)
79
80 normalize
81
82 (* By executing it - just type the advance command - you will see that the goal
83 has changed to west = west, by reducing the subexpression (opposite east). 
84 You may use the retract bottom to undo the step, if you wish. 
85
86 The new goal west = west is trivial: it is just a consequence of reflexivity.
87 Such trivial steps can be just closed in Matita by typing a double slash. 
88 We complete the proof by the qed command, that instructs the system to store the
89 lemma performing some book-keeping operations. 
90 *)
91
92 // qed.
93
94 (* In exactly the same way, we can prove that the opposite side of west is east.
95 In this case, we avoid the unnecessary simplification step: // will take care of 
96 it. *) 
97
98 lemma west_to_east : \ 5a href="cic:/matita/tutorial/chapter1/opposite.def(1)"\ 6opposite\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6.
99 // qed.
100
101 (* A slightly more complex problem consists in proving that opposite is 
102 idempotent *)
103
104 lemma idempotent_opposite : ∀x. \ 5a href="cic:/matita/tutorial/chapter1/opposite.def(1)"\ 6opposite\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter1/opposite.def(1)"\ 6opposite\ 5/a\ 6 x) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 x.
105
106 (* we start the proof moving x from the conclusion into the context, that is a 
107 (backward) introduction step. Matita syntax for an introduction step is simply 
108 the sharp character followed by the name of the item to be moved into the 
109 context. This also allows us to rename the item, if needed: for instance if we 
110 wish to rename x into b (since it is a bank), we just type #b. *)
111
112 #b
113
114 (* See the effect of the execution in the goal window on the right: b has been 
115 added to the context (replacing x in the conclusion); moreover its implicit type 
116 "bank" has been made explicit. 
117
118 But how are we supposed to proceed, now? Simplification cannot help us, since b
119 is a variable: just try to call normalize and you will see that it has no effect.
120 The point is that we must proceed by cases according to the possible values of b,
121 namely east and west. To this aim, you must invoke the cases command, followed by
122 the name of the hypothesis (more generally, an arbitrary expression) that must be
123 the object of the case analysis (in our case, b).
124 *)
125
126 cases b
127
128 (* Executing the previous command has the effect of opening two subgoals, 
129 corresponding to the two cases b=east and b=west: you may switch from one to the 
130 other by using the hyperlinks over the top of the goal window. 
131 Both goals can be closed by trivial computations, so we may use // as usual.
132 If we had to treat each subgoal in a different way, we should focus on each of 
133 them in turn, in a way that will be described at the end of this section.
134 *)
135
136 // qed.
137
138 (* Instead of working with functions, it is sometimes convenient to work with
139 predicates. For instance, instead of defining a function computing the opposite 
140 bank, we could declare a predicate stating when two banks are opposite to each 
141 other. Only two cases are possible, leading naturally to the following 
142 definition:
143 *)
144
145 inductive opp : \ 5a href="cic:/matita/tutorial/chapter1/bank.ind(1,0,0)"\ 6bank\ 5/a\ 6 → \ 5a href="cic:/matita/tutorial/chapter1/bank.ind(1,0,0)"\ 6bank\ 5/a\ 6 → Prop ≝ 
146 | east_west : opp \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6
147 | west_east : opp \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6.
148
149 (* In precisely the same way as "bank" is the smallest type containing east and
150 west, opp is the smallest predicate containing the two sub-cases east_west and
151 weast_east. If you have some familiarity with Prolog, you may look at opp as the
152 predicate defined by the two clauses - in this case, the two facts - ast_west and
153 west_east.
154
155 Between opp and opposite we have the following relation:
156     opp a b iff a = opposite b
157 Let us prove it, starting from the left to right implication, first *)
158
159 lemma opp_to_opposite: ∀a,b. \ 5a href="cic:/matita/tutorial/chapter1/opp.ind(1,0,0)"\ 6opp\ 5/a\ 6 a b → a \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/opposite.def(1)"\ 6opposite\ 5/a\ 6 b.
160  
161 (* We start the proof introducing a, b and the hypothesis opp a b, that we
162 call oppab. *)
163 #a #b #oppab
164
165 (* Now we proceed by cases on the possible proofs of (opp a b), that is on the 
166 possible shapes of oppab. By definition, there are only two possibilities, 
167 namely east_west or west_east. Both subcases are trivial, and can be closed by
168 automation *)
169
170 cases oppab // qed.
171
172 (* Let us come to the opposite direction. *)
173
174 lemma opposite_to_opp: ∀a,b. a \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/opposite.def(1)"\ 6opposite\ 5/a\ 6 b → \ 5a href="cic:/matita/tutorial/chapter1/opp.ind(1,0,0)"\ 6opp\ 5/a\ 6 a b.
175
176 (* As usual, we start introducing a, b and the hypothesis (a = opposite b), 
177 that we call eqa. *)
178
179 #a #b #eqa
180
181 (* The right way to proceed, now, is by rewriting a into (opposite b). We do
182 this by typing ">eqa". If we wished to rewrite in the opposite direction, namely
183 opposite b into a, we would have typed "<eqa". *)
184
185 >eqa
186
187 (* We conclude the proof by cases on b. *)
188
189 cases b // qed.
190
191 (*
192 It is time to proceed with our formalization of the farmer's problem. 
193 A state of the system is defined by the position of four item: the goat, the 
194 wolf, the cabbage, and the boat. The simplest way to declare such a data type
195 is to use a record.
196 *)
197
198 record state : Type[0] ≝
199   {goat_pos : \ 5a href="cic:/matita/tutorial/chapter1/bank.ind(1,0,0)"\ 6bank\ 5/a\ 6;
200    wolf_pos : \ 5a href="cic:/matita/tutorial/chapter1/bank.ind(1,0,0)"\ 6bank\ 5/a\ 6;
201    cabbage_pos: \ 5a href="cic:/matita/tutorial/chapter1/bank.ind(1,0,0)"\ 6bank\ 5/a\ 6;
202    boat_pos : \ 5a href="cic:/matita/tutorial/chapter1/bank.ind(1,0,0)"\ 6bank\ 5/a\ 6}.
203
204 (* When you define a record named foo, the system automatically defines a record 
205 constructor named mk_foo. To construct a new record you pass as arguments to 
206 mk_foo the values of the record fields *)
207
208 definition start ≝ \ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6.
209 definition end ≝ \ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6.
210
211 (* We must now define the possible moves. A natural way to do it is in the form 
212 of a relation (a binary predicate) over states. *)
213
214 inductive move : \ 5a href="cic:/matita/tutorial/chapter1/state.ind(1,0,0)"\ 6state\ 5/a\ 6 → \ 5a href="cic:/matita/tutorial/chapter1/state.ind(1,0,0)"\ 6state\ 5/a\ 6 → Prop ≝
215 | move_goat: ∀g,g1,w,c. \ 5a href="cic:/matita/tutorial/chapter1/opp.ind(1,0,0)"\ 6opp\ 5/a\ 6 g g1 → move (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c g) (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g1 w c g1)
216   (* We can move the goat from a bank g to the opposite bank g1 if and only if the
217      boat is on the same bank g of the goat and we move the boat along with it. *)
218 | move_wolf: ∀g,w,w1,c. \ 5a href="cic:/matita/tutorial/chapter1/opp.ind(1,0,0)"\ 6opp\ 5/a\ 6 w w1 → move (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c w) (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w1 c w1)
219 | move_cabbage: ∀g,w,c,c1.\ 5a href="cic:/matita/tutorial/chapter1/opp.ind(1,0,0)"\ 6opp\ 5/a\ 6 c c1 → move (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c c) (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c1 c1)
220 | move_boat: ∀g,w,c,b,b1. \ 5a href="cic:/matita/tutorial/chapter1/opp.ind(1,0,0)"\ 6opp\ 5/a\ 6 b b1 → move (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c b) (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c b1).
221
222 (* A state is safe if either the goat is on the same bank of the boat, or both 
223 the wolf and the cabbage are on the opposite bank of the goat. *)
224
225 inductive safe_state : \ 5a href="cic:/matita/tutorial/chapter1/state.ind(1,0,0)"\ 6state\ 5/a\ 6 → Prop ≝
226 | with_boat : ∀g,w,c.safe_state (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c g)
227 | opposite_side : ∀g,g1,b.\ 5a href="cic:/matita/tutorial/chapter1/opp.ind(1,0,0)"\ 6opp\ 5/a\ 6 g g1 → safe_state (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g g1 g1 b).
228
229 (* Finally, a state y is reachable from x if either there is a single move 
230 leading from x to y, or there is a safe state z such that z is reachable from x 
231 and there is a move leading from z to y *)
232
233 inductive reachable : \ 5a href="cic:/matita/tutorial/chapter1/state.ind(1,0,0)"\ 6state\ 5/a\ 6 → \ 5a href="cic:/matita/tutorial/chapter1/state.ind(1,0,0)"\ 6state\ 5/a\ 6 → Prop ≝
234 | one : ∀x,y.\ 5a href="cic:/matita/tutorial/chapter1/move.ind(1,0,0)"\ 6move\ 5/a\ 6 x y → reachable x y
235 | more : ∀x,z,y. \ 5span style="text-decoration: underline;"\ 6\ 5/span\ 6reachable x z → \ 5a href="cic:/matita/tutorial/chapter1/safe_state.ind(1,0,0)"\ 6safe_state\ 5/a\ 6 z → \ 5span style="text-decoration: underline;"\ 6\ 5/span\ 6\ 5a href="cic:/matita/tutorial/chapter1/move.ind(1,0,0)"\ 6move\ 5/a\ 6 z y → reachable x y.
236
237 (* Remarkably, Matita is now able to solve the problem by itslef, provided
238 you allow automation to exploit more resources. The command /n/ is similar to
239 //, where n is a measure of this complexity: in particular it is a bound to
240 the depth of the expected proof tree (more precisely, to the number of nested
241 applicative nodes). In this case, there is a solution in six moves, and we
242 need a few more applications to handle reachability, and side conditions. 
243 The magic number to let automation work is, in this case, 9.  *)
244
245 lemma problem: \ 5a href="cic:/matita/tutorial/chapter1/reachable.ind(1,0,0)"\ 6reachable\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/start.def(1)"\ 6start\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/end.def(1)"\ 6end\ 5/a\ 6.
246 normalize /9/ qed. 
247
248 (* Let us now try to derive the proof in a more interactive way. Of course, we
249 expect to need several moves to transfer all items from a bank to the other, so 
250 we should start our proof by applying "more".
251 *)
252
253 lemma problem1: \ 5a href="cic:/matita/tutorial/chapter1/reachable.ind(1,0,0)"\ 6reachable\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/start.def(1)"\ 6start\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/end.def(1)"\ 6end\ 5/a\ 6.
254 normalize @\ 5a href="cic:/matita/tutorial/chapter1/reachable.con(0,2,0)"\ 6more\ 5/a\ 6
255
256 (* We have now four open subgoals:
257
258   X : STATE
259   Y : reachable [east,east,east,east] X
260   W : safe_state X
261   Z : move X [west,west,west,west]
262  
263 That is, we must guess a state X, such that this is reachable from start, it is 
264 safe, and there is a move leading from X to end. All goals are active, that is
265 emphasized by the fact that they are all red. Any command typed by the user is
266 normally applied in parallel to all active goals, but clearly we must proceed 
267 here is a different way for each of them. The way to do it, is by structuring
268 the script using the following syntax: [...|... |...|...] where we typically have
269 as many cells inside the brackets as the number of the active subgoals. The
270 interesting point is that we can associate with the three symbol "[", "|" and
271 "]" a small-step semantics that allow to execute them individually. In particular
272
273 - the operator "[" opens a new focusing section for the currently active goals,
274   and focus on the first of them
275 - the operator "|" shift the focus to the next goal
276 - the operator "]" close the focusing section, falling back to the previous level
277   and adding to it all remaining goals not yet closed
278
279 Let us see the effect of the "[" on our proof:
280 *)
281
282   [  
283
284 (* As you see, only the first goal has now the focus on. Moreover, all goals got
285 a progressive numerical label, to help designating them, if needed. 
286 We can now proceed in several possible ways. The most straightforward way is to 
287 provide the intermediate state, that is [east,west,west,east]. We can do it, by 
288 just applying this term. *)
289
290    @(\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6
291
292 (* This application closes the goal; at present, no goal has the focus on.
293 In order to act on the next goal, we must focus on it using the "|" operator. In
294 this case, we would like to skip the next goal, and focus on the trivial third 
295 subgoal: a simple way to do it, is by retyping "|". The proof that 
296 [east,west,west,east] is safe is trivial and can be done with //.*)
297
298   || //
299
300 (*
301 We then advance to the next goal, namely the fact that there is a move from 
302 [east,west,west,east] to [west,west,west,west]; this is trivial too, but it 
303 requires /2/ since move_goat opens an additional subgoal. By applying "]" we
304 refocus on the skipped goal, going back to a situation similar to the one we
305 started with. *)
306
307   | /2/ ] 
308
309 (* Let us perform the next step, namely moving back the boat, in a sligtly 
310 different way. The more operation expects as second argument the new 
311 intermediate state, hence instead of applying more we can apply this term
312 already instatated on the next intermediate state. As first argument, we
313 type a question mark that stands for an implicit argument to be guessed by
314 the system. *)
315
316 @(\ 5a href="cic:/matita/tutorial/chapter1/reachable.con(0,2,0)"\ 6more\ 5/a\ 6 ? (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6))
317
318 (* We now get three independent subgoals, all actives, and two of them are 
319 trivial. We\ 5span style="font-family: Verdana,sans-serif;"\ 6 \ 5/span\ 6can just apply automation to all of them, and it will close the two
320 trivial goals. *)
321
322 /2/
323
324 (* Let us come to the next step, that consists in moving the wolf. Suppose that 
325 instead of specifying the next intermediate state, we prefer to specify the next 
326 move. In the spirit of the previous example, we can do it in the following way 
327 *)
328
329 @(\ 5a href="cic:/matita/tutorial/chapter1/reachable.con(0,2,0)"\ 6more\ 5/a\ 6 … (\ 5a href="cic:/matita/tutorial/chapter1/move.con(0,2,0)"\ 6move_wolf\ 5/a\ 6 … ))
330
331 (* The dots stand here for an arbitrary number of implicit arguments, to be 
332 guessed by the system. 
333 Unfortunately, the previous move is not enough to fully instantiate the new 
334 intermediate state: a bank B remains unknown. Automation cannot help here,
335 since all goals depend from this bank and automation refuses to close some
336 subgoals instantiating other subgoals remaining open (the instantiation could
337 be arbitrary). The simplest way to proceed is to focus on the bank, that is
338 the fourth subgoal, and explicitly instatiate it. Instead of repeatedly using "|",
339 we can perform focusing by typing "4:" as described by the following command. *)
340
341 [4: @\ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6] /2/
342
343 (* Alternatively, we can directly instantiate the bank into the move. Let
344 us complete the proof in this, very readable way. *)
345
346 @(\ 5a href="cic:/matita/tutorial/chapter1/reachable.con(0,2,0)"\ 6more\ 5/a\ 6 … (\ 5a href="cic:/matita/tutorial/chapter1/move.con(0,1,0)"\ 6move_goat\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 … )) /2/
347 @(\ 5a href="cic:/matita/tutorial/chapter1/reachable.con(0,2,0)"\ 6more\ 5/a\ 6 … (\ 5a href="cic:/matita/tutorial/chapter1/move.con(0,3,0)"\ 6move_cabbage\ 5/a\ 6 ?? \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6 … )) /2/
348 @(\ 5a href="cic:/matita/tutorial/chapter1/reachable.con(0,2,0)"\ 6more\ 5/a\ 6 … (\ 5a href="cic:/matita/tutorial/chapter1/move.con(0,4,0)"\ 6move_boat\ 5/a\ 6 ??? \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 … )) /2/
349 @\ 5a href="cic:/matita/tutorial/chapter1/reachable.con(0,1,0)"\ 6one\ 5/a\ 6 /2/ qed.