]> matita.cs.unibo.it Git - helm.git/blobdiff - matita/library/nat/gcd.ma
branch for universe
[helm.git] / matita / library / nat / gcd.ma
diff --git a/matita/library/nat/gcd.ma b/matita/library/nat/gcd.ma
new file mode 100644 (file)
index 0000000..3db29f6
--- /dev/null
@@ -0,0 +1,934 @@
+(**************************************************************************)
+(*       ___                                                               *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||       A.Asperti, C.Sacerdoti Coen,                          *)
+(*      ||A||       E.Tassi, S.Zacchiroli                                 *)
+(*      \   /                                                             *)
+(*       \ /        Matita is distributed under the terms of the          *)
+(*        v         GNU Lesser General Public License Version 2.1         *)
+(*                                                                        *)
+(**************************************************************************)
+
+include "nat/primes.ma".
+include "nat/lt_arith.ma".
+
+let rec gcd_aux p m n: nat \def
+match divides_b n m with
+[ true \Rightarrow n
+| false \Rightarrow 
+  match p with
+  [O \Rightarrow n
+  |(S q) \Rightarrow gcd_aux q n (m \mod n)]].
+  
+definition gcd : nat \to nat \to nat \def
+\lambda n,m:nat.
+  match leb n m with
+  [ true \Rightarrow 
+    match n with 
+    [ O \Rightarrow m
+    | (S p) \Rightarrow gcd_aux (S p) m (S p) ]
+  | false \Rightarrow 
+    match m with 
+    [ O \Rightarrow n
+    | (S p) \Rightarrow gcd_aux (S p) n (S p) ]].
+
+theorem divides_mod: \forall p,m,n:nat. O < n \to p \divides m \to p \divides n \to
+p \divides (m \mod n).
+intros.elim H1.elim H2.
+(* apply (witness ? ? (n2 - n1*(m / n))). *)
+apply witness[|
+rewrite > distr_times_minus.
+rewrite < H3 in \vdash (? ? ? (? % ?)).
+rewrite < assoc_times.
+rewrite < H4 in \vdash (? ? ? (? ? (? % ?))).
+apply sym_eq.apply plus_to_minus.
+rewrite > sym_times.
+letin x \def div.
+rewrite < (div_mod ? ? H).
+reflexivity.
+]
+qed.
+
+theorem divides_mod_to_divides: \forall p,m,n:nat. O < n \to
+p \divides (m \mod n) \to p \divides n \to p \divides m. 
+intros.elim H1.elim H2.
+apply (witness p m ((n1*(m / n))+n2)).
+rewrite > distr_times_plus.
+rewrite < H3.
+rewrite < assoc_times.
+rewrite < H4.rewrite < sym_times.
+apply div_mod.assumption.
+qed.
+
+theorem divides_gcd_aux_mn: \forall p,m,n. O < n \to n \le m \to n \le p \to
+gcd_aux p m n \divides m \land gcd_aux p m n \divides n. 
+intro.elim p.
+absurd (O < n).assumption.apply le_to_not_lt.assumption.
+cut ((n1 \divides m) \lor (n1 \ndivides m)).
+simplify.
+elim Hcut.rewrite > divides_to_divides_b_true.
+simplify.
+split.assumption.apply (witness n1 n1 (S O)).apply times_n_SO.
+assumption.assumption.
+rewrite > not_divides_to_divides_b_false.
+simplify.
+cut (gcd_aux n n1 (m \mod n1) \divides n1 \land
+gcd_aux n n1 (m \mod n1) \divides mod m n1).
+elim Hcut1.
+split.apply (divides_mod_to_divides ? ? n1).
+assumption.assumption.assumption.assumption.
+apply H.
+cut (O \lt m \mod n1 \lor O = mod m n1).
+elim Hcut1.assumption.
+apply False_ind.apply H4.apply mod_O_to_divides.
+assumption.apply sym_eq.assumption.
+apply le_to_or_lt_eq.apply le_O_n.
+apply lt_to_le.
+apply lt_mod_m_m.assumption.
+apply le_S_S_to_le.
+apply (trans_le ? n1).
+change with (m \mod n1 < n1).
+apply lt_mod_m_m.assumption.assumption.
+assumption.assumption.
+apply (decidable_divides n1 m).assumption.
+qed.
+
+theorem divides_gcd_nm: \forall n,m.
+gcd n m \divides m \land gcd n m \divides n.
+intros.
+change with
+(match leb n m with
+  [ true \Rightarrow 
+    match n with 
+    [ O \Rightarrow m
+    | (S p) \Rightarrow gcd_aux (S p) m (S p) ]
+  | false \Rightarrow 
+    match m with 
+    [ O \Rightarrow n
+    | (S p) \Rightarrow gcd_aux (S p) n (S p) ] ] \divides m
+\land
+match leb n m with
+  [ true \Rightarrow 
+    match n with 
+    [ O \Rightarrow m
+    | (S p) \Rightarrow gcd_aux (S p) m (S p) ]
+  | false \Rightarrow 
+    match m with 
+    [ O \Rightarrow n
+    | (S p) \Rightarrow gcd_aux (S p) n (S p) ] ] \divides n). 
+apply (leb_elim n m).
+apply (nat_case1 n).
+simplify.intros.split.
+apply (witness m m (S O)).apply times_n_SO.
+apply (witness m O O).apply times_n_O.
+intros.change with
+(gcd_aux (S m1) m (S m1) \divides m
+\land 
+gcd_aux (S m1) m (S m1) \divides (S m1)).
+apply divides_gcd_aux_mn.
+unfold lt.apply le_S_S.apply le_O_n.
+assumption.apply le_n.
+simplify.intro.
+apply (nat_case1 m).
+simplify.intros.split.
+apply (witness n O O).apply times_n_O.
+apply (witness n n (S O)).apply times_n_SO.
+intros.change with
+(gcd_aux (S m1) n (S m1) \divides (S m1)
+\land 
+gcd_aux (S m1) n (S m1) \divides n).
+cut (gcd_aux (S m1) n (S m1) \divides n
+\land 
+gcd_aux (S m1) n (S m1) \divides S m1).
+elim Hcut.split.assumption.assumption.
+apply divides_gcd_aux_mn.
+unfold lt.apply le_S_S.apply le_O_n.
+apply not_lt_to_le.unfold Not. unfold lt.intro.apply H.
+rewrite > H1.apply (trans_le ? (S n)).
+apply le_n_Sn.assumption.apply le_n.
+qed.
+
+theorem divides_gcd_n: \forall n,m. gcd n m \divides n.
+intros. 
+exact (proj2  ? ? (divides_gcd_nm n m)).
+qed.
+
+theorem divides_gcd_m: \forall n,m. gcd n m \divides m.
+intros. 
+exact (proj1 ? ? (divides_gcd_nm n m)).
+qed.
+
+
+theorem divides_times_gcd_aux: \forall p,m,n,d,c. 
+O \lt c \to O < n \to n \le m \to n \le p \to
+d \divides (c*m) \to d \divides (c*n) \to d \divides c*gcd_aux p m n. 
+intro.
+elim p
+[ absurd (O < n)
+  [ assumption
+  | apply le_to_not_lt.
+    assumption
+  ]
+| simplify.
+  cut (n1 \divides m \lor n1 \ndivides m)
+  [ elim Hcut
+    [ rewrite > divides_to_divides_b_true
+      [ simplify.
+        assumption
+      | assumption
+      | assumption
+      ]
+    | rewrite > not_divides_to_divides_b_false
+      [ simplify.
+        apply H
+        [ assumption
+        | cut (O \lt m \mod n1 \lor O = m \mod n1)
+          [ elim Hcut1
+            [ assumption
+            | absurd (n1 \divides m)
+              [ apply mod_O_to_divides
+                [ assumption
+                | apply sym_eq.
+                  assumption
+                ]
+              | assumption
+              ]
+            ]
+          | apply le_to_or_lt_eq.
+            apply le_O_n
+          ]
+        | apply lt_to_le.
+          apply lt_mod_m_m.
+          assumption
+        | apply le_S_S_to_le.
+          apply (trans_le ? n1)
+          [ change with (m \mod n1 < n1).
+            apply lt_mod_m_m.
+            assumption
+          | assumption
+          ]
+        | assumption
+        | rewrite < times_mod
+          [ rewrite < (sym_times c m).
+            rewrite < (sym_times c n1).
+            apply divides_mod
+            [ rewrite > (S_pred c)
+              [ rewrite > (S_pred n1)
+                [ apply (lt_O_times_S_S)
+                | assumption
+                ]
+              | assumption
+              ]
+            | assumption
+            | assumption
+            ]
+          | assumption
+          | assumption
+          ]
+        ]
+      | assumption
+      | assumption
+      ]
+    ]
+  | apply (decidable_divides n1 m).
+    assumption
+  ]
+]
+qed.
+
+(*a particular case of the previous theorem (setting c=1)*)
+theorem divides_gcd_aux: \forall p,m,n,d. O < n \to n \le m \to n \le p \to
+d \divides m \to d \divides n \to d \divides gcd_aux p m n. 
+intros.
+rewrite > (times_n_SO (gcd_aux p m n)).
+rewrite < (sym_times (S O)).
+apply (divides_times_gcd_aux)
+[ apply (lt_O_S O)
+| assumption
+| assumption
+| assumption
+| rewrite > (sym_times (S O)).
+  rewrite < (times_n_SO m).
+  assumption
+| rewrite > (sym_times (S O)).
+  rewrite < (times_n_SO n).
+  assumption
+]
+qed.
+
+theorem divides_d_times_gcd: \forall m,n,d,c. 
+O \lt c \to d \divides (c*m) \to d \divides (c*n) \to d \divides c*gcd n m. 
+intros.
+change with
+(d \divides c *
+match leb n m with
+  [ true \Rightarrow 
+    match n with 
+    [ O \Rightarrow m
+    | (S p) \Rightarrow gcd_aux (S p) m (S p) ]
+  | false \Rightarrow 
+    match m with 
+    [ O \Rightarrow n
+    | (S p) \Rightarrow gcd_aux (S p) n (S p) ]]).
+apply (leb_elim n m)
+[ apply (nat_case1 n)
+  [ simplify.
+    intros.
+    assumption
+  | intros.
+    change with (d \divides c*gcd_aux (S m1) m (S m1)).
+    apply divides_times_gcd_aux
+    [ assumption
+    | unfold lt.
+      apply le_S_S.
+      apply le_O_n
+    | assumption
+    | apply (le_n (S m1))
+    | assumption
+    | rewrite < H3.
+      assumption
+    ]
+  ]
+| apply (nat_case1 m)
+  [ simplify.
+    intros.
+    assumption
+  | intros.
+    change with (d \divides c * gcd_aux (S m1) n (S m1)).
+    apply divides_times_gcd_aux
+    [ unfold lt.
+      change with (O \lt c).
+      assumption
+    | apply lt_O_S
+    | apply lt_to_le.
+      apply not_le_to_lt.
+      assumption
+    | apply (le_n (S m1)).
+    | assumption
+    | rewrite < H3.
+      assumption
+    ]
+  ]
+]
+qed.
+
+(*a particular case of the previous theorem (setting c=1)*)
+theorem divides_d_gcd: \forall m,n,d. 
+d \divides m \to d \divides n \to d \divides gcd n m. 
+intros.
+rewrite > (times_n_SO (gcd n m)).
+rewrite < (sym_times (S O)).
+apply (divides_d_times_gcd)
+[ apply (lt_O_S O)
+| rewrite > (sym_times (S O)).
+  rewrite < (times_n_SO m).
+  assumption
+| rewrite > (sym_times (S O)).
+  rewrite < (times_n_SO n).
+  assumption
+]
+qed.
+
+theorem eq_minus_gcd_aux: \forall p,m,n.O < n \to n \le m \to n \le p \to
+\exists a,b. a*n - b*m = gcd_aux p m n \lor b*m - a*n = gcd_aux p m n.
+intro.
+elim p
+  [absurd (O < n)
+    [assumption
+    |apply le_to_not_lt.assumption
+    ]
+  |cut (O < m)
+    [cut (n1 \divides m \lor  n1 \ndivides m)
+      [simplify.
+       elim Hcut1
+        [rewrite > divides_to_divides_b_true
+          [simplify.
+           apply (ex_intro ? ? (S O)).
+           apply (ex_intro ? ? O).
+           left.
+           simplify.
+           rewrite < plus_n_O.
+           apply sym_eq.
+           apply minus_n_O
+          |assumption
+          |assumption
+          ]
+        |rewrite > not_divides_to_divides_b_false
+          [change with
+           (\exists a,b.a*n1 - b*m = gcd_aux n n1 (m \mod n1)
+            \lor b*m - a*n1 = gcd_aux n n1 (m \mod n1)).
+           cut 
+           (\exists a,b.a*(m \mod n1) - b*n1= gcd_aux n n1 (m \mod n1)
+            \lor b*n1 - a*(m \mod n1) = gcd_aux n n1 (m \mod n1))
+            [elim Hcut2.elim H5.elim H6
+              [(* first case *)
+               rewrite < H7.
+               apply (ex_intro ? ? (a1+a*(m / n1))).
+               apply (ex_intro ? ? a).
+               right.
+               rewrite < sym_plus.
+               rewrite < (sym_times n1).
+               rewrite > distr_times_plus.
+               rewrite > (sym_times n1).
+               rewrite > (sym_times n1).
+               rewrite > (div_mod m n1) in \vdash (? ? (? % ?) ?)
+                [rewrite > assoc_times.
+                 rewrite < sym_plus.
+                 rewrite > distr_times_plus.
+                 rewrite < eq_minus_minus_minus_plus.
+                 rewrite < sym_plus.
+                 rewrite < plus_minus
+                  [rewrite < minus_n_n.reflexivity
+                  |apply le_n
+                  ]
+                |assumption
+                ]
+              |(* second case *)
+              rewrite < H7.
+               apply (ex_intro ? ? (a1+a*(m / n1))).
+               apply (ex_intro ? ? a).
+               left.
+               (* clear Hcut2.clear H5.clear H6.clear H. *)
+               rewrite > sym_times.
+               rewrite > distr_times_plus.
+               rewrite > sym_times.
+               rewrite > (sym_times n1).
+               rewrite > (div_mod m n1) in \vdash (? ? (? ? %) ?)
+                [rewrite > distr_times_plus.
+                 rewrite > assoc_times.
+                 rewrite < eq_minus_minus_minus_plus.
+                 rewrite < sym_plus.
+                 rewrite < plus_minus
+                  [rewrite < minus_n_n.reflexivity
+                  |apply le_n
+                  ]
+                |assumption
+                ]
+              ]
+            |apply (H n1 (m \mod n1))
+              [cut (O \lt m \mod n1 \lor O = m \mod n1)
+                [elim Hcut2
+                  [assumption 
+                  |absurd (n1 \divides m)
+                    [apply mod_O_to_divides
+                      [assumption
+                      |symmetry.assumption
+                      ]
+                    |assumption
+                    ]
+                  ]
+                |apply le_to_or_lt_eq.
+                 apply le_O_n
+                ]
+              |apply lt_to_le.
+               apply lt_mod_m_m.
+               assumption
+              |apply le_S_S_to_le.
+               apply (trans_le ? n1)
+                [change with (m \mod n1 < n1).
+                 apply lt_mod_m_m.
+                 assumption
+                |assumption
+                ]
+              ]
+            ]
+          |assumption
+          |assumption
+          ]
+        ]
+      |apply (decidable_divides n1 m).
+       assumption
+      ]
+    |apply (lt_to_le_to_lt ? n1);assumption
+    ]
+  ]
+qed.
+
+theorem eq_minus_gcd:
+ \forall m,n.\exists a,b.a*n - b*m = (gcd n m) \lor b*m - a*n = (gcd n m).
+intros.
+unfold gcd.
+apply (leb_elim n m).
+apply (nat_case1 n).
+simplify.intros.
+apply (ex_intro ? ? O).
+apply (ex_intro ? ? (S O)).
+right.simplify.
+rewrite < plus_n_O.
+apply sym_eq.apply minus_n_O.
+intros.
+change with 
+(\exists a,b.
+a*(S m1) - b*m = (gcd_aux (S m1) m (S m1)) 
+\lor b*m - a*(S m1) = (gcd_aux (S m1) m (S m1))).
+apply eq_minus_gcd_aux.
+unfold lt. apply le_S_S.apply le_O_n.
+assumption.apply le_n.
+apply (nat_case1 m).
+simplify.intros.
+apply (ex_intro ? ? (S O)).
+apply (ex_intro ? ? O).
+left.simplify.
+rewrite < plus_n_O.
+apply sym_eq.apply minus_n_O.
+intros.
+change with 
+(\exists a,b.
+a*n - b*(S m1) = (gcd_aux (S m1) n (S m1)) 
+\lor b*(S m1) - a*n = (gcd_aux (S m1) n (S m1))).
+cut 
+(\exists a,b.
+a*(S m1) - b*n = (gcd_aux (S m1) n (S m1))
+\lor
+b*n - a*(S m1) = (gcd_aux (S m1) n (S m1))).
+elim Hcut.elim H2.elim H3.
+apply (ex_intro ? ? a1).
+apply (ex_intro ? ? a).
+right.assumption.
+apply (ex_intro ? ? a1).
+apply (ex_intro ? ? a).
+left.assumption.
+apply eq_minus_gcd_aux.
+unfold lt. apply le_S_S.apply le_O_n.
+apply lt_to_le.apply not_le_to_lt.assumption.
+apply le_n.
+qed.
+
+(* some properties of gcd *)
+
+theorem gcd_O_n: \forall n:nat. gcd O n = n.
+intro.simplify.reflexivity.
+qed.
+
+theorem gcd_O_to_eq_O:\forall m,n:nat. (gcd m n) = O \to
+m = O \land n = O.
+intros.cut (O \divides n \land O \divides m).
+elim Hcut.elim H2.split.
+assumption.elim H1.assumption.
+rewrite < H.
+apply divides_gcd_nm.
+qed.
+
+theorem lt_O_gcd:\forall m,n:nat. O < n \to O < gcd m n.
+intros.
+apply (nat_case1 (gcd m n)).
+intros.
+generalize in match (gcd_O_to_eq_O m n H1).
+intros.elim H2.
+rewrite < H4 in \vdash (? ? %).assumption.
+intros.unfold lt.apply le_S_S.apply le_O_n.
+qed.
+
+theorem gcd_n_n: \forall n.gcd n n = n.
+intro.elim n
+  [reflexivity
+  |apply le_to_le_to_eq
+    [apply divides_to_le
+      [apply lt_O_S
+      |apply divides_gcd_n
+      ]
+    |apply divides_to_le
+      [apply lt_O_gcd.apply lt_O_S
+      |apply divides_d_gcd
+        [apply divides_n_n|apply divides_n_n]
+      ]
+    ]
+  ]
+qed.
+
+theorem gcd_SO_to_lt_O: \forall i,n. (S O) < n \to gcd i n = (S O) \to
+O < i.
+intros.
+elim (le_to_or_lt_eq ? ? (le_O_n i))
+  [assumption
+  |absurd ((gcd i n) = (S O))
+    [assumption
+    |rewrite < H2.
+     simplify.
+     unfold.intro.
+     apply (lt_to_not_eq (S O) n H).
+     apply sym_eq.assumption
+    ]
+  ]
+qed.
+
+theorem gcd_SO_to_lt_n: \forall i,n. (S O) < n \to i \le n \to gcd i n = (S O) \to
+i < n.
+intros.
+elim (le_to_or_lt_eq ? ? H1)
+  [assumption
+  |absurd ((gcd i n) = (S O))
+    [assumption
+    |rewrite > H3.
+     rewrite > gcd_n_n.
+     unfold.intro.
+     apply (lt_to_not_eq (S O) n H).
+     apply sym_eq.assumption
+    ]
+  ]
+qed.
+
+theorem  gcd_n_times_nm: \forall n,m. O < m \to gcd n (n*m) = n.
+intro.apply (nat_case n)
+  [intros.reflexivity
+  |intros.
+   apply le_to_le_to_eq
+    [apply divides_to_le
+      [apply lt_O_S|apply divides_gcd_n]
+    |apply divides_to_le
+      [apply lt_O_gcd.rewrite > (times_n_O O).
+       apply lt_times[apply lt_O_S|assumption]
+      |apply divides_d_gcd
+        [apply (witness ? ? m1).reflexivity
+        |apply divides_n_n
+        ]
+      ]
+    ]
+  ]
+qed.
+
+theorem symmetric_gcd: symmetric nat gcd.
+change with 
+(\forall n,m:nat. gcd n m = gcd m n).
+intros.
+cut (O < (gcd n m) \lor O = (gcd n m)).
+elim Hcut.
+cut (O < (gcd m n) \lor O = (gcd m n)).
+elim Hcut1.
+apply antisym_le.
+apply divides_to_le.assumption.
+apply divides_d_gcd.apply divides_gcd_n.apply divides_gcd_m.
+apply divides_to_le.assumption.
+apply divides_d_gcd.apply divides_gcd_n.apply divides_gcd_m.
+rewrite < H1.
+cut (m=O \land n=O).
+elim Hcut2.rewrite > H2.rewrite > H3.reflexivity.
+apply gcd_O_to_eq_O.apply sym_eq.assumption.
+apply le_to_or_lt_eq.apply le_O_n.
+rewrite < H.
+cut (n=O \land m=O).
+elim Hcut1.rewrite > H1.rewrite > H2.reflexivity.
+apply gcd_O_to_eq_O.apply sym_eq.assumption.
+apply le_to_or_lt_eq.apply le_O_n.
+qed.
+
+variant sym_gcd: \forall n,m:nat. gcd n m = gcd m n \def
+symmetric_gcd.
+
+theorem le_gcd_times: \forall m,n,p:nat. O< p \to gcd m n \le gcd m (n*p).
+intros.
+apply (nat_case n).apply le_n.
+intro.
+apply divides_to_le.
+apply lt_O_gcd.
+rewrite > (times_n_O O).
+apply lt_times.unfold lt.apply le_S_S.apply le_O_n.assumption.
+apply divides_d_gcd.
+apply (transitive_divides ? (S m1)).
+apply divides_gcd_m.
+apply (witness ? ? p).reflexivity.
+apply divides_gcd_n.
+qed.
+
+theorem gcd_times_SO_to_gcd_SO: \forall m,n,p:nat. O < n \to O < p \to 
+gcd m (n*p) = (S O) \to gcd m n = (S O).
+intros.
+apply antisymmetric_le.
+rewrite < H2.
+apply le_gcd_times.assumption.
+change with (O < gcd m n). 
+apply lt_O_gcd.assumption.
+qed.
+
+(* for the "converse" of the previous result see the end  of this development *)
+
+theorem eq_gcd_SO_to_not_divides: \forall n,m. (S O) < n \to 
+(gcd n m) = (S O) \to \lnot (divides n m).
+intros.unfold.intro.
+elim H2.
+generalize in match H1.
+rewrite > H3.
+intro.
+cut (O < n2)
+  [elim (gcd_times_SO_to_gcd_SO n n n2 ? ? H4)
+    [cut (gcd n (n*n2) = n)
+      [apply (lt_to_not_eq (S O) n)
+        [assumption|rewrite < H4.assumption]
+      |apply gcd_n_times_nm.assumption
+      ]
+    |apply (trans_lt ? (S O))[apply le_n|assumption]
+    |assumption
+    ]
+  |elim (le_to_or_lt_eq O n2 (le_O_n n2));
+    [assumption
+    |apply False_ind.
+     apply (le_to_not_lt n (S O))
+      [rewrite < H4.
+       apply divides_to_le
+        [rewrite > H4.apply lt_O_S
+        |apply divides_d_gcd
+          [apply (witness ? ? n2).reflexivity
+          |apply divides_n_n
+          ]
+        ]
+      |assumption
+      ]
+    ]
+  ]
+qed.
+
+theorem gcd_SO_n: \forall n:nat. gcd (S O) n = (S O).
+intro.
+apply antisym_le.apply divides_to_le.unfold lt.apply le_n.
+apply divides_gcd_n.
+cut (O < gcd (S O) n \lor O = gcd (S O) n).
+elim Hcut.assumption.
+apply False_ind.
+apply (not_eq_O_S O).
+cut ((S O)=O \land n=O).
+elim Hcut1.apply sym_eq.assumption.
+apply gcd_O_to_eq_O.apply sym_eq.assumption.
+apply le_to_or_lt_eq.apply le_O_n.
+qed.
+
+theorem divides_gcd_mod: \forall m,n:nat. O < n \to
+divides (gcd m n) (gcd n (m \mod n)).
+intros.
+apply divides_d_gcd.
+apply divides_mod.assumption.
+apply divides_gcd_n.
+apply divides_gcd_m.
+apply divides_gcd_m.
+qed.
+
+theorem divides_mod_gcd: \forall m,n:nat. O < n \to
+divides (gcd n (m \mod n)) (gcd m n) .
+intros.
+apply divides_d_gcd.
+apply divides_gcd_n.
+apply (divides_mod_to_divides ? ? n).
+assumption.
+apply divides_gcd_m.
+apply divides_gcd_n.
+qed.
+
+theorem gcd_mod: \forall m,n:nat. O < n \to
+(gcd n (m \mod n)) = (gcd m n) .
+intros.
+apply antisymmetric_divides.
+apply divides_mod_gcd.assumption.
+apply divides_gcd_mod.assumption.
+qed.
+
+(* gcd and primes *)
+
+theorem prime_to_gcd_SO: \forall n,m:nat. prime n \to n \ndivides m \to
+gcd n m = (S O).
+intros.unfold prime in H.
+elim H.
+apply antisym_le.
+apply not_lt_to_le.unfold Not.unfold lt.
+intro.
+apply H1.rewrite < (H3 (gcd n m)).
+apply divides_gcd_m.
+apply divides_gcd_n.assumption.
+cut (O < gcd n m \lor O = gcd n m).
+elim Hcut.assumption.
+apply False_ind.
+apply (not_le_Sn_O (S O)).
+cut (n=O \land m=O).
+elim Hcut1.rewrite < H5 in \vdash (? ? %).assumption.
+apply gcd_O_to_eq_O.apply sym_eq.assumption.
+apply le_to_or_lt_eq.apply le_O_n.
+qed.
+
+(* primes and divides *)
+theorem divides_times_to_divides: \forall n,p,q:nat.prime n \to n \divides p*q \to
+n \divides p \lor n \divides q.
+intros.
+cut (n \divides p \lor n \ndivides p)
+  [elim Hcut
+    [left.assumption
+    |right.
+     cut (\exists a,b. a*n - b*p = (S O) \lor b*p - a*n = (S O))
+       [elim Hcut1.elim H3.elim H4
+         [(* first case *)
+          rewrite > (times_n_SO q).rewrite < H5.
+          rewrite > distr_times_minus.
+          rewrite > (sym_times q (a1*p)).
+          rewrite > (assoc_times a1).
+          elim H1.
+          (*
+             rewrite > H6.
+             applyS (witness n (n*(q*a-a1*n2)) (q*a-a1*n2))
+             reflexivity. *);
+          applyS (witness n ? ? (refl_eq ? ?)) (* timeout=50 *).
+          (*
+          rewrite < (sym_times n).rewrite < assoc_times.
+          rewrite > (sym_times q).rewrite > assoc_times.
+          rewrite < (assoc_times a1).rewrite < (sym_times n).
+          rewrite > (assoc_times n).
+          rewrite < distr_times_minus.
+          apply (witness ? ? (q*a-a1*n2)).reflexivity
+          *)
+         |(* second case *)
+          rewrite > (times_n_SO q).rewrite < H5.
+          rewrite > distr_times_minus.
+          rewrite > (sym_times q (a1*p)).
+          rewrite > (assoc_times a1).
+          elim H1.rewrite > H6.
+          rewrite < sym_times.rewrite > assoc_times.
+          rewrite < (assoc_times q).
+          rewrite < (sym_times n).
+          rewrite < distr_times_minus.
+          apply (witness ? ? (n2*a1-q*a)).reflexivity
+        ](* end second case *)
+     |rewrite < (prime_to_gcd_SO n p)
+       [apply eq_minus_gcd|assumption|assumption
+       ]
+     ]
+   ]
+ |apply (decidable_divides n p).
+  apply (trans_lt ? (S O))
+    [unfold lt.apply le_n
+    |unfold prime in H.elim H. assumption
+    ]
+  ]
+qed.
+
+theorem divides_exp_to_divides: 
+\forall p,n,m:nat. prime p \to 
+p \divides n \sup m \to p \divides n.
+intros 3.elim m.simplify in H1.
+apply (transitive_divides p (S O)).assumption.
+apply divides_SO_n.
+cut (p \divides n \lor p \divides n \sup n1).
+elim Hcut.assumption.
+apply H.assumption.assumption.
+apply divides_times_to_divides.assumption.
+exact H2.
+qed.
+
+theorem divides_exp_to_eq: 
+\forall p,q,m:nat. prime p \to prime q \to
+p \divides q \sup m \to p = q.
+intros.
+unfold prime in H1.
+elim H1.apply H4.
+apply (divides_exp_to_divides p q m).
+assumption.assumption.
+unfold prime in H.elim H.assumption.
+qed.
+
+theorem eq_gcd_times_SO: \forall m,n,p:nat. O < n \to O < p \to
+gcd m n = (S O) \to gcd m p = (S O) \to gcd m (n*p) = (S O).
+intros.
+apply antisymmetric_le.
+apply not_lt_to_le.
+unfold Not.intro.
+cut (divides (smallest_factor (gcd m (n*p))) n \lor 
+     divides (smallest_factor (gcd m (n*p))) p).
+elim Hcut.
+apply (not_le_Sn_n (S O)).
+change with ((S O) < (S O)).
+rewrite < H2 in \vdash (? ? %).
+apply (lt_to_le_to_lt ? (smallest_factor (gcd m (n*p)))).
+apply lt_SO_smallest_factor.assumption.
+apply divides_to_le.
+rewrite > H2.unfold lt.apply le_n.
+apply divides_d_gcd.assumption.
+apply (transitive_divides ? (gcd m (n*p))).
+apply divides_smallest_factor_n.
+apply (trans_lt ? (S O)). unfold lt. apply le_n. assumption.
+apply divides_gcd_n.
+apply (not_le_Sn_n (S O)).
+change with ((S O) < (S O)).
+rewrite < H3 in \vdash (? ? %).
+apply (lt_to_le_to_lt ? (smallest_factor (gcd m (n*p)))).
+apply lt_SO_smallest_factor.assumption.
+apply divides_to_le.
+rewrite > H3.unfold lt.apply le_n.
+apply divides_d_gcd.assumption.
+apply (transitive_divides ? (gcd m (n*p))).
+apply divides_smallest_factor_n.
+apply (trans_lt ? (S O)). unfold lt. apply le_n. assumption.
+apply divides_gcd_n.
+apply divides_times_to_divides.
+apply prime_smallest_factor_n.
+assumption.
+apply (transitive_divides ? (gcd m (n*p))).
+apply divides_smallest_factor_n.
+apply (trans_lt ? (S O)).unfold lt. apply le_n. assumption.
+apply divides_gcd_m.
+change with (O < gcd m (n*p)).
+apply lt_O_gcd.
+rewrite > (times_n_O O).
+apply lt_times.assumption.assumption.
+qed.
+
+theorem gcd_SO_to_divides_times_to_divides: \forall m,n,p:nat. O < n \to
+gcd n m = (S O) \to n \divides (m*p) \to n \divides p.
+intros.
+cut (n \divides p \lor n \ndivides p)
+  [elim Hcut
+    [assumption
+    |cut (\exists a,b. a*n - b*m = (S O) \lor b*m - a*n = (S O))
+      [elim Hcut1.elim H4.elim H5         
+        [(* first case *)
+          rewrite > (times_n_SO p).rewrite < H6.
+          rewrite > distr_times_minus.
+          rewrite > (sym_times p (a1*m)).
+          rewrite > (assoc_times a1).
+          elim H2.
+          applyS (witness n ? ? (refl_eq ? ?)) (* timeout=50 *).
+         |(* second case *)
+          rewrite > (times_n_SO p).rewrite < H6.
+          rewrite > distr_times_minus.
+          rewrite > (sym_times p (a1*m)).
+          rewrite > (assoc_times a1).
+          elim H2.
+          applyS (witness n ? ? (refl_eq ? ?)).
+        ](* end second case *)
+     |rewrite < H1.apply eq_minus_gcd.
+     ]
+   ]
+ |apply (decidable_divides n p).
+  assumption.
+ ]
+qed.
+
+(*
+theorem divides_to_divides_times1: \forall p,q,n. prime p \to prime q \to p \neq q \to
+divides p n \to divides q n \to divides (p*q) n.
+intros.elim H3.
+rewrite > H5 in H4.
+elim (divides_times_to_divides ? ? ? H1 H4)
+  [elim H.apply False_ind.
+   apply H2.apply sym_eq.apply H8
+    [assumption
+    |apply prime_to_lt_SO.assumption
+    ]
+  |elim H6.
+   apply (witness ? ? n1).
+   rewrite > assoc_times.
+   rewrite < H7.assumption
+  ]
+qed.
+*)
+
+theorem divides_to_divides_times: \forall p,q,n. prime p  \to p \ndivides q \to
+divides p n \to divides q n \to divides (p*q) n.
+intros.elim H3.
+rewrite > H4 in H2.
+elim (divides_times_to_divides ? ? ? H H2)
+  [apply False_ind.apply H1.assumption
+  |elim H5.
+   apply (witness ? ? n1).
+   rewrite > sym_times in ⊢ (? ? ? (? % ?)).
+   rewrite > assoc_times.
+   rewrite < H6.assumption
+  ]
+qed.
\ No newline at end of file