]> matita.cs.unibo.it Git - helm.git/blobdiff - matita/library/nat/minus.ma
branch for universe
[helm.git] / matita / library / nat / minus.ma
diff --git a/matita/library/nat/minus.ma b/matita/library/nat/minus.ma
new file mode 100644 (file)
index 0000000..a0133e9
--- /dev/null
@@ -0,0 +1,399 @@
+(**************************************************************************)
+(*       ___                                                               *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||       A.Asperti, C.Sacerdoti Coen,                          *)
+(*      ||A||       E.Tassi, S.Zacchiroli                                 *)
+(*      \   /                                                             *)
+(*       \ /        This file is distributed under the terms of the       *)
+(*        v         GNU Lesser General Public License Version 2.1         *)
+(*                                                                        *)
+(**************************************************************************)
+
+
+include "nat/le_arith.ma".
+include "nat/compare.ma".
+
+let rec minus n m \def 
+ match n with 
+ [ O \Rightarrow O
+ | (S p) \Rightarrow 
+       match m with
+       [O \Rightarrow (S p)
+        | (S q) \Rightarrow minus p q ]].
+
+(*CSC: the URI must disappear: there is a bug now *)
+interpretation "natural minus" 'minus x y = (cic:/matita/nat/minus/minus.con x y).
+
+theorem minus_n_O: \forall n:nat.n=n-O.
+intros.elim n.simplify.reflexivity.
+simplify.reflexivity.
+qed.
+
+theorem minus_n_n: \forall n:nat.O=n-n.
+intros.elim n.simplify.
+reflexivity.
+simplify.apply H.
+qed.
+
+theorem minus_Sn_n: \forall n:nat. S O = (S n)-n.
+intro.elim n.
+simplify.reflexivity.
+elim H.reflexivity.
+qed.
+
+theorem minus_Sn_m: \forall n,m:nat. m \leq n \to (S n)-m = S (n-m).
+intros 2.
+apply (nat_elim2
+(\lambda n,m.m \leq n \to (S n)-m = S (n-m))).
+intros.apply (le_n_O_elim n1 H).
+simplify.reflexivity.
+intros.simplify.reflexivity.
+intros.rewrite < H.reflexivity.
+apply le_S_S_to_le. assumption.
+qed.
+
+theorem eq_minus_S_pred: \forall n,m. n - (S m) = pred(n -m).
+apply nat_elim2
+  [intro.reflexivity
+  |intro.simplify.autobatch
+  |intros.simplify.assumption
+  ]
+qed.
+
+theorem plus_minus:
+\forall n,m,p:nat. m \leq n \to (n-m)+p = (n+p)-m.
+intros 2.
+apply (nat_elim2
+(\lambda n,m.\forall p:nat.m \leq n \to (n-m)+p = (n+p)-m)).
+intros.apply (le_n_O_elim ? H).
+simplify.rewrite < minus_n_O.reflexivity.
+intros.simplify.reflexivity.
+intros.simplify.apply H.apply le_S_S_to_le.assumption.
+qed.
+
+theorem minus_plus_m_m: \forall n,m:nat.n = (n+m)-m.
+intros 2.
+generalize in match n.
+elim m.
+rewrite < minus_n_O.apply plus_n_O.
+elim n2.simplify.
+apply minus_n_n.
+rewrite < plus_n_Sm.
+change with (S n3 = (S n3 + n1)-n1).
+apply H.
+qed.
+
+theorem plus_minus_m_m: \forall n,m:nat.
+m \leq n \to n = (n-m)+m.
+intros 2.
+apply (nat_elim2 (\lambda n,m.m \leq n \to n = (n-m)+m)).
+intros.apply (le_n_O_elim n1 H).
+reflexivity.
+intros.simplify.rewrite < plus_n_O.reflexivity.
+intros.simplify.rewrite < sym_plus.simplify.
+apply eq_f.rewrite < sym_plus.apply H.
+apply le_S_S_to_le.assumption.
+qed.
+
+theorem minus_to_plus :\forall n,m,p:nat.m \leq n \to n-m = p \to 
+n = m+p.
+intros.apply (trans_eq ? ? ((n-m)+m)).
+apply plus_minus_m_m.
+apply H.elim H1.
+apply sym_plus.
+qed.
+
+theorem plus_to_minus :\forall n,m,p:nat.
+n = m+p \to n-m = p.
+intros.
+apply (inj_plus_r m).
+rewrite < H.
+rewrite < sym_plus.
+symmetry.
+apply plus_minus_m_m.rewrite > H.
+rewrite > sym_plus.
+apply le_plus_n.
+qed.
+
+theorem minus_S_S : \forall n,m:nat.
+eq nat (minus (S n) (S m)) (minus n m).
+intros.
+reflexivity.
+qed.
+
+theorem minus_pred_pred : \forall n,m:nat. lt O n \to lt O m \to 
+eq nat (minus (pred n) (pred m)) (minus n m).
+intros.
+apply (lt_O_n_elim n H).intro.
+apply (lt_O_n_elim m H1).intro.
+simplify.reflexivity.
+qed.
+
+theorem eq_minus_n_m_O: \forall n,m:nat.
+n \leq m \to n-m = O.
+intros 2.
+apply (nat_elim2 (\lambda n,m.n \leq m \to n-m = O)).
+intros.simplify.reflexivity.
+intros.apply False_ind.
+apply not_le_Sn_O;
+[2: apply H | skip].
+intros.
+simplify.apply H.apply le_S_S_to_le. apply H1.
+qed.
+
+theorem le_SO_minus: \forall n,m:nat.S n \leq m \to S O \leq m-n.
+intros.elim H.elim (minus_Sn_n n).apply le_n.
+rewrite > minus_Sn_m.
+apply le_S.assumption.
+apply lt_to_le.assumption.
+qed.
+
+theorem minus_le_S_minus_S: \forall n,m:nat. m-n \leq S (m-(S n)).
+intros.apply (nat_elim2 (\lambda n,m.m-n \leq S (m-(S n)))).
+intro.elim n1.simplify.apply le_n_Sn.
+simplify.rewrite < minus_n_O.apply le_n.
+intros.simplify.apply le_n_Sn.
+intros.simplify.apply H.
+qed.
+
+theorem lt_minus_S_n_to_le_minus_n : \forall n,m,p:nat. m-(S n) < p \to m-n \leq p. 
+intros 3.simplify.intro.
+apply (trans_le (m-n) (S (m-(S n))) p).
+apply minus_le_S_minus_S.
+assumption.
+qed.
+
+theorem le_minus_m: \forall n,m:nat. n-m \leq n.
+intros.apply (nat_elim2 (\lambda m,n. n-m \leq n)).
+intros.rewrite < minus_n_O.apply le_n.
+intros.simplify.apply le_n.
+intros.simplify.apply le_S.assumption.
+qed.
+
+theorem lt_minus_m: \forall n,m:nat. O < n \to O < m \to n-m \lt n.
+intros.apply (lt_O_n_elim n H).intro.
+apply (lt_O_n_elim m H1).intro.
+simplify.unfold lt.apply le_S_S.apply le_minus_m.
+qed.
+
+theorem minus_le_O_to_le: \forall n,m:nat. n-m \leq O \to n \leq m.
+intros 2.
+apply (nat_elim2 (\lambda n,m:nat.n-m \leq O \to n \leq m)).
+intros.apply le_O_n.
+simplify.intros. assumption.
+simplify.intros.apply le_S_S.apply H.assumption.
+qed.
+
+(* galois *)
+theorem monotonic_le_minus_r: 
+\forall p,q,n:nat. q \leq p \to n-p \le n-q.
+simplify.intros 2.apply (nat_elim2 
+(\lambda p,q.\forall a.q \leq p \to a-p \leq a-q)).
+intros.apply (le_n_O_elim n H).apply le_n.
+intros.rewrite < minus_n_O.
+apply le_minus_m.
+intros.elim a.simplify.apply le_n.
+simplify.apply H.apply le_S_S_to_le.assumption.
+qed.
+
+theorem le_minus_to_plus: \forall n,m,p. (le (n-m) p) \to (le n (p+m)).
+intros 2.apply (nat_elim2 (\lambda n,m.\forall p.(le (n-m) p) \to (le n (p+m)))).
+intros.apply le_O_n.
+simplify.intros.rewrite < plus_n_O.assumption.
+intros.
+rewrite < plus_n_Sm.
+apply le_S_S.apply H.
+exact H1.
+qed.
+
+theorem le_plus_to_minus: \forall n,m,p. (le n (p+m)) \to (le (n-m) p).
+intros 2.apply (nat_elim2 (\lambda n,m.\forall p.(le n (p+m)) \to (le (n-m) p))).
+intros.simplify.apply le_O_n.
+intros 2.rewrite < plus_n_O.intro.simplify.assumption.
+intros.simplify.apply H.
+apply le_S_S_to_le.rewrite > plus_n_Sm.assumption.
+qed.
+
+(* the converse of le_plus_to_minus does not hold *)
+theorem le_plus_to_minus_r: \forall n,m,p. (le (n+m) p) \to (le n (p-m)).
+intros 3.apply (nat_elim2 (\lambda m,p.(le (n+m) p) \to (le n (p-m)))).
+intro.rewrite < plus_n_O.rewrite < minus_n_O.intro.assumption.
+intro.intro.cut (n=O).rewrite > Hcut.apply le_O_n.
+apply sym_eq. apply le_n_O_to_eq.
+apply (trans_le ? (n+(S n1))).
+rewrite < sym_plus.
+apply le_plus_n.assumption.
+intros.simplify.
+apply H.apply le_S_S_to_le.
+rewrite > plus_n_Sm.assumption.
+qed.
+
+(* minus and lt - to be completed *)
+theorem lt_minus_l: \forall m,l,n:nat. 
+  l < m \to m \le n \to n - m < n - l.
+apply nat_elim2
+  [intros.apply False_ind.apply (not_le_Sn_O ? H)
+  |intros.rewrite < minus_n_O.
+   autobatch
+  |intros.
+   generalize in match H2.
+   apply (nat_case n1)
+    [intros.apply False_ind.apply (not_le_Sn_O ? H3)
+    |intros.simplify.
+     apply H
+      [
+       apply lt_S_S_to_lt.
+       assumption
+      |apply le_S_S_to_le.assumption
+      ]
+    ]
+  ]
+qed.
+
+theorem lt_minus_r: \forall n,m,l:nat. 
+  n \le l \to l < m \to l -n < m -n.
+intro.elim n
+  [applyS H1
+  |rewrite > eq_minus_S_pred.
+   rewrite > eq_minus_S_pred.
+   apply lt_pred
+    [unfold lt.apply le_plus_to_minus_r.applyS H1
+    |apply H[autobatch|assumption]
+    ]
+  ]
+qed.
+
+lemma lt_to_lt_O_minus : \forall m,n.
+  n < m \to O < m - n.
+intros.  
+unfold. apply le_plus_to_minus_r. unfold in H. rewrite > sym_plus. 
+rewrite < plus_n_Sm. 
+rewrite < plus_n_O. 
+assumption.
+qed.  
+
+theorem lt_minus_to_plus: \forall n,m,p. (lt n (p-m)) \to (lt (n+m) p).
+intros 3.apply (nat_elim2 (\lambda m,p.(lt n (p-m)) \to (lt (n+m) p))).
+intro.rewrite < plus_n_O.rewrite < minus_n_O.intro.assumption.
+simplify.intros.apply False_ind.apply (not_le_Sn_O n H).
+simplify.intros.unfold lt.
+apply le_S_S.
+rewrite < plus_n_Sm.
+apply H.apply H1.
+qed.
+
+theorem lt_O_minus_to_lt: \forall a,b:nat.
+O \lt b-a \to a \lt b.
+intros.
+rewrite > (plus_n_O a).
+rewrite > (sym_plus a O).
+apply (lt_minus_to_plus O  a b).
+assumption.
+qed.
+
+theorem lt_minus_to_lt_plus:
+\forall n,m,p. n - m < p \to n < m + p.
+intros 2.
+apply (nat_elim2 ? ? ? ? n m)
+  [simplify.intros.autobatch.
+  |intros 2.rewrite < minus_n_O.
+   intro.assumption
+  |intros.
+   simplify.
+   cut (n1 < m1+p)
+    [autobatch
+    |apply H.
+     apply H1
+    ]
+  ]
+qed.
+
+theorem lt_plus_to_lt_minus:
+\forall n,m,p. m \le n \to n < m + p \to n - m < p.
+intros 2.
+apply (nat_elim2 ? ? ? ? n m)
+  [simplify.intros 3.
+   apply (le_n_O_elim ? H).
+   simplify.intros.assumption
+  |simplify.intros.assumption.
+  |intros.
+   simplify.
+   apply H
+    [apply le_S_S_to_le.assumption
+    |apply le_S_S_to_le.apply H2
+    ]
+  ]
+qed. 
+
+theorem minus_m_minus_mn: \forall n,m. n\le m \to n=m-(m-n).
+intros.
+apply sym_eq.
+apply plus_to_minus.
+autobatch.
+qed.
+
+theorem distributive_times_minus: distributive nat times minus.
+unfold distributive.
+intros.
+apply ((leb_elim z y)).
+  intro.cut (x*(y-z)+x*z = (x*y-x*z)+x*z).
+    apply (inj_plus_l (x*z)).assumption.
+    apply (trans_eq nat ? (x*y)).
+      rewrite < distr_times_plus.rewrite < (plus_minus_m_m ? ? H).reflexivity.
+      rewrite < plus_minus_m_m.
+        reflexivity.
+        apply le_times_r.assumption.
+  intro.rewrite > eq_minus_n_m_O.
+    rewrite > (eq_minus_n_m_O (x*y)).
+      rewrite < sym_times.simplify.reflexivity.
+        apply le_times_r.apply lt_to_le.apply not_le_to_lt.assumption.
+        apply lt_to_le.apply not_le_to_lt.assumption.
+qed.
+
+theorem distr_times_minus: \forall n,m,p:nat. n*(m-p) = n*m-n*p
+\def distributive_times_minus.
+
+theorem eq_minus_plus_plus_minus: \forall n,m,p:nat. p \le m \to (n+m)-p = n+(m-p).
+intros.
+apply plus_to_minus.
+rewrite > sym_plus in \vdash (? ? ? %).
+rewrite > assoc_plus.
+rewrite < plus_minus_m_m.
+reflexivity.assumption.
+qed.
+
+theorem eq_minus_minus_minus_plus: \forall n,m,p:nat. (n-m)-p = n-(m+p).
+intros.
+cut (m+p \le n \or m+p \nleq n).
+  elim Hcut.
+    symmetry.apply plus_to_minus.
+    rewrite > assoc_plus.rewrite > (sym_plus p).rewrite < plus_minus_m_m.
+      rewrite > sym_plus.rewrite < plus_minus_m_m.
+        reflexivity.
+        apply (trans_le ? (m+p)).
+          rewrite < sym_plus.apply le_plus_n.
+          assumption.
+      apply le_plus_to_minus_r.rewrite > sym_plus.assumption.   
+    rewrite > (eq_minus_n_m_O n (m+p)).
+      rewrite > (eq_minus_n_m_O (n-m) p).
+        reflexivity.
+      apply le_plus_to_minus.apply lt_to_le. rewrite < sym_plus.
+       apply not_le_to_lt. assumption.
+    apply lt_to_le.apply not_le_to_lt.assumption.          
+  apply (decidable_le (m+p) n).
+qed.
+
+theorem eq_plus_minus_minus_minus: \forall n,m,p:nat. p \le m \to m \le n \to
+p+(n-m) = n-(m-p).
+intros.
+apply sym_eq.
+apply plus_to_minus.
+rewrite < assoc_plus.
+rewrite < plus_minus_m_m.
+rewrite < sym_plus.
+rewrite < plus_minus_m_m.reflexivity.
+assumption.assumption.
+qed.