]> matita.cs.unibo.it Git - helm.git/commitdiff
split to easy inclusion
authorStefano Zacchiroli <zack@upsilon.cc>
Mon, 21 Nov 2005 13:12:51 +0000 (13:12 +0000)
committerStefano Zacchiroli <zack@upsilon.cc>
Mon, 21 Nov 2005 13:12:51 +0000 (13:12 +0000)
helm/ocaml/cic_notation/doc/body.tex [new file with mode: 0644]
helm/ocaml/cic_notation/doc/main.tex

diff --git a/helm/ocaml/cic_notation/doc/body.tex b/helm/ocaml/cic_notation/doc/body.tex
new file mode 100644 (file)
index 0000000..f1ce735
--- /dev/null
@@ -0,0 +1,788 @@
+
+\section{Environment}
+
+\[
+\begin{array}{rcll}
+  V & ::= & & \mbox{(\bf values)} \\
+    &     & \verb+Term+~T & \mbox{(term)} \\
+    &  |  & \verb+String+~s & \mbox{(string)} \\
+    &  |  & \verb+Number+~n & \mbox{(number)} \\
+    &  |  & \verb+None+ & \mbox{(optional value)} \\
+    &  |  & \verb+Some+~V & \mbox{(optional value)} \\
+    &  |  & [V_1,\dots,V_n] & \mbox{(list value)} \\[2ex]
+\end{array}
+\]
+
+An environment is a map $\mathcal E : \mathit{Name} -> V$.
+
+\section{Level 1: concrete syntax}
+
+\begin{table}
+\caption{\label{tab:l1c} Concrete syntax of level 1 patterns.\strut}
+\hrule
+\[
+\begin{array}{rcll}
+  P & ::= & & \mbox{(\bf patterns)} \\
+    &     & S^{+} \\[2ex]
+  S & ::= & & \mbox{(\bf simple patterns)} \\
+    &     & l \\
+    &  |  & S~\verb+\sub+~S\\
+    &  |  & S~\verb+\sup+~S\\
+    &  |  & S~\verb+\below+~S\\
+    &  |  & S~\verb+\atop+~S\\
+    &  |  & S~\verb+\over+~S\\
+    &  |  & S~\verb+\atop+~S\\
+    &  |  & \verb+\frac+~S~S \\
+    &  |  & \verb+\sqrt+~S \\
+    &  |  & \verb+\root+~S~\verb+\of+~S \\
+    &  |  & \verb+(+~P~\verb+)+ \\
+    &  |  & \verb+hbox (+~P~\verb+)+ \\
+    &  |  & \verb+vbox (+~P~\verb+)+ \\
+    &  |  & \verb+hvbox (+~P~\verb+)+ \\
+    &  |  & \verb+hovbox (+~P~\verb+)+ \\
+    &  |  & \verb+break+ \\
+    &  |  & \verb+list0+~S~[\verb+sep+~l] \\
+    &  |  & \verb+list1+~S~[\verb+sep+~l] \\
+    &  |  & \verb+opt+~S \\
+    &  |  & [\verb+term+]~x \\
+    &  |  & \verb+number+~x \\
+    &  |  & \verb+ident+~x \\
+\end{array}
+\]
+\hrule
+\end{table}
+
+Rationale: while the layout schemata can occur in the concrete syntax
+used by user, the box schemata and the magic patterns can only occur
+when defining the notation. This is why the layout schemata are
+``escaped'' with a backslash, so that they cannot be confused with
+plain identifiers, wherease the others are not. Alternatively, they
+could be defined as keywords, but this would prevent their names to be
+used in different contexts.
+
+\begin{table}
+\caption{\label{tab:l1a} Abstract syntax of level 1 terms and patterns.\strut}
+\hrule
+\[
+\begin{array}{@{}ll@{}}
+\begin{array}[t]{rcll}
+  T & ::= & & \mbox{(\bf terms)} \\
+    &     & L_\kappa[T_1,\dots,T_n] & \mbox{(layout)} \\
+    &  |  & B_\kappa^{ab}[T_1\cdots T_n] & \mbox{(box)} \\
+    &  |  & \BREAK & \mbox{(breakpoint)} \\
+    &  |  & \FENCED{T_1\cdots T_n} & \mbox{(fenced)} \\
+    &  |  & l & \mbox{(literal)} \\[2ex]
+  P & ::= & & \mbox{(\bf patterns)} \\
+    &     & L_\kappa[P_1,\dots,P_n] & \mbox{(layout)} \\
+    &  |  & B_\kappa^{ab}[P_1\cdots P_n] & \mbox{(box)} \\
+    &  |  & \BREAK & \mbox{(breakpoint)} \\
+    &  |  & \FENCED{P_1\cdots P_n} & \mbox{(fenced)} \\
+    &  |  & M & \mbox{(magic)} \\
+    &  |  & V & \mbox{(variable)} \\
+    &  |  & l & \mbox{(literal)} \\
+\end{array} &
+\begin{array}[t]{rcll}
+  V & ::= & & \mbox{(\bf variables)} \\
+    &     & \TVAR{x} & \mbox{(term variable)} \\
+    &  |  & \NVAR{x} & \mbox{(number variable)} \\
+    &  |  & \IVAR{x} & \mbox{(name variable)} \\[2ex]
+  M & ::= & & \mbox{(\bf magic patterns)} \\
+    &     & \verb+list0+~P~l? & \mbox{(possibly empty list)} \\
+    &  |  & \verb+list1+~P~l? & \mbox{(non-empty list)} \\
+    &  |  & \verb+opt+~P & \mbox{(option)} \\[2ex]
+\end{array}
+\end{array}
+\]
+\hrule
+\end{table}
+
+\[
+\ITO{\cdot}{{}} : P -> \mathit{Env} -> T
+\]
+
+\begin{table}
+\caption{\label{tab:il1f2} Instantiation of level 1 patterns from level 2.\strut}
+\hrule
+\[
+\begin{array}{rcll}
+  \ITO{L_\kappa[P_1,\dots,P_n]}{E} & = & L_\kappa[\ITO{(P_1)}{E},\dots,\ITO{(P_n)}{E} ] \\
+  \ITO{B_\kappa^{ab}[P_1\cdots P_n]}{E} & = & B_\kappa^{ab}[\ITO{P_1}{E}\cdots\ITO{P_n}{E}] \\
+  \ITO{\BREAK}{E} & = & \BREAK \\
+  \ITO{(P)}{E} & = & \ITO{P}{E} \\
+  \ITO{(P_1\cdots P_n)}{E} & = & B_H^{00}[\ITO{P_1}{E}\cdots\ITO{P_n}{E}] \\
+  \ITO{\TVAR{x}}{E} & = & t & \mathcal{E}(x) = \verb+Term+~t \\
+  \ITO{\NVAR{x}}{E} & = & l & \mathcal{E}(x) = \verb+Number+~l \\
+  \ITO{\IVAR{x}}{E} & = & l & \mathcal{E}(x) = \verb+String+~l \\
+  \ITO{\mathtt{opt}~P}{E} & = & \varepsilon & \mathcal{E}(\NAMES(P)) = \{\mathtt{None}\} \\
+  \ITO{\mathtt{opt}~P}{E} & = & \ITO{P}{E'} & \mathcal{E}(\NAMES(P)) = \{\mathtt{Some}~v_1,\dots,\mathtt{Some}~v_n\} \\
+  & & & \mathcal{E}'(x)=\left\{
+  \begin{array}{@{}ll}
+    v, & \mathcal{E}(x) = \mathtt{Some}~v \\
+    \mathcal{E}(x), & \mbox{otherwise}
+  \end{array}
+  \right. \\
+  \ITO{\mathtt{list}k~P~l?}{E} & = & \ITO{P}{{E}_1}~{l?}\cdots {l?}~\ITO{P}{{E}_n} &
+    \mathcal{E}(\NAMES(P)) = \{[v_{11},\dots,v_{1n}],\dots,[v_{m1},\dots,v_{mn}]\} \\
+    & & & n\ge k \\
+  & & & \mathcal{E}_i(x) = \left\{
+  \begin{array}{@{}ll}
+    v_i, & \mathcal{E}(x) = [v_1,\dots,v_n] \\
+    \mathcal{E}(x), & \mbox{otherwise}
+  \end{array}
+  \right. \\
+  \ITO{l}{E} & = & l \\
+
+%%     &  |  & (P) & \mbox{(fenced)} \\
+%%     &  |  & M & \mbox{(magic)} \\
+%%     &  |  & V & \mbox{(variable)} \\
+%%     &  |  & l & \mbox{(literal)} \\[2ex]
+%%   V & ::= & & \mbox{(\bf variables)} \\
+%%     &     & \TVAR{x} & \mbox{(term variable)} \\
+%%     &  |  & \NVAR{x} & \mbox{(number variable)} \\
+%%     &  |  & \IVAR{x} & \mbox{(name variable)} \\[2ex]
+%%   M & ::= & & \mbox{(\bf magic patterns)} \\
+%%     &     & \verb+list0+~S~l? & \mbox{(possibly empty list)} \\
+%%     &  |  & \verb+list1+~S~l? & \mbox{(non-empty list)} \\
+%%     &  |  & \verb+opt+~S & \mbox{(option)} \\[2ex]  
+\end{array}
+\]
+\hrule
+\end{table}
+
+\begin{table}
+\caption{\label{tab:wfl0} Well-formedness rules for level 1 patterns.\strut}
+\hrule
+\[
+\renewcommand{\arraystretch}{3.5}
+\begin{array}[t]{@{}c@{}}
+  \inference[\sc layout]
+    {P_i :: D_i & \forall i,j, i\ne j => \DOMAIN(D_i) \cap \DOMAIN(D_j) = \emptyset}
+    {L_\kappa[P_1,\dots,P_n] :: D_1\oplus\cdots\oplus D_n}
+  \\
+  \inference[\sc box]
+    {P_i :: D_i & \forall i,j, i\ne j => \DOMAIN(D_i) \cap \DOMAIN(D_j) = \emptyset}
+    {B_\kappa^{ab}[P_1\cdots P_n] :: D_1\oplus\cdots\oplus D_n}
+  \\
+  \inference[\sc fenced]
+    {P_i :: D_i & \forall i,j, i\ne j => \DOMAIN(D_i) \cap \DOMAIN(D_j) = \emptyset}
+    {\FENCED{P_1\cdots P_n} :: D_1\oplus\cdots\oplus D_n}
+  \\
+  \inference[\sc breakpoint]
+    {}
+    {\BREAK :: \emptyset}
+  \qquad
+  \inference[\sc literal]
+    {}
+    {l :: \emptyset}
+  \qquad
+  \inference[\sc tvar]
+    {}
+    {\TVAR{x} :: \TVAR{x}}
+  \\
+  \inference[\sc nvar]
+    {}
+    {\NVAR{x} :: \NVAR{x}}
+  \qquad
+  \inference[\sc ivar]
+    {}
+    {\IVAR{x} :: \IVAR{x}}
+  \\
+  \inference[\sc list0]
+    {P :: D & \forall x\in\DOMAIN(D), D'(x) = D(x)~\mathtt{List}}
+    {\mathtt{list0}~P~l? :: D'}
+  \\
+  \inference[\sc list1]
+    {P :: D & \forall x\in\DOMAIN(D), D'(x) = D(x)~\mathtt{List}}
+    {\mathtt{list1}~P~l? :: D'}
+  \\
+  \inference[\sc opt]
+    {P :: D & \forall x\in\DOMAIN(D), D'(x) = D(x)~\mathtt{Option}}
+    {\mathtt{opt}~P :: D'}
+\end{array}
+\]
+\hrule
+\end{table}
+
+\newcommand{\ATTRS}[1]{\langle#1\rangle}
+\newcommand{\ANNPOS}[2]{\mathit{pos}(#1)_{#2}}
+
+\begin{table}
+\caption{\label{tab:addparens} Can't read the AST and need parentheses? Here you go!.\strut}
+\hrule
+\[
+\begin{array}{rcll}
+  \ADDPARENS{l}{n} & = & l \\
+  \ADDPARENS{\BREAK}{n} & = & \BREAK \\
+  \ADDPARENS{\ATTRS{\mathit{prec}=m}T}{n} & = & \ADDPARENS{T}{m} & n < m \\
+  \ADDPARENS{\ATTRS{\mathit{prec}=m}T}{n} & = & \FENCED{\ADDPARENS{T}{\bot}} & n > m \\
+  \ADDPARENS{\ATTRS{\mathit{prec}=n,\mathit{assoc}=L,\mathit{pos}=R}T}{n} & = & \FENCED{\ADDPARENS{T}{\bot}} \\
+  \ADDPARENS{\ATTRS{\mathit{prec}=n,\mathit{assoc}=R,\mathit{pos}=L}T}{n} & = & \FENCED{\ADDPARENS{T}{\bot}} \\
+  \ADDPARENS{\ATTRS{\cdots}T}{n} & = & \ADDPARENS{T}{n} \\
+  \ADDPARENS{L_\kappa[T_1,\dots,\underline{T_k},\dots,T_m]}{n} & = & L_\kappa[\ADDPARENS{T_1}{n},\dots,\ADDPARENS{T_k}{\bot},\dots,\ADDPARENS{T_m}{n}] \\
+  \ADDPARENS{B_\kappa^{ab}[T_1,\dots,T_m]}{n} & = & B_\kappa^{ab}[\ADDPARENS{T_1}{n},\dots,\ADDPARENS{T_m}{n}]
+\end{array}
+\]
+\hrule
+\end{table}
+
+\begin{table}
+\caption{\label{tab:annpos} Annotation of level 1 meta variable with position information.\strut}
+\hrule
+\[
+\begin{array}{rcll}
+  \ANNPOS{l}{p,q} & = & l \\
+  \ANNPOS{\BREAK}{p,q} & = & \BREAK \\
+  \ANNPOS{x}{1,0} & = & \ATTRS{\mathit{pos}=L}{x} \\
+  \ANNPOS{x}{0,1} & = & \ATTRS{\mathit{pos}=R}{x} \\
+  \ANNPOS{x}{p,q} & = & \ATTRS{\mathit{pos}=I}{x} \\
+  \ANNPOS{B_\kappa^{ab}[P]}{p,q} & = & B_\kappa^{ab}[\ANNPOS{P}{p,q}] \\
+  \ANNPOS{B_\kappa^{ab}[\{\BREAK\} P_1\cdots P_n\{\BREAK\}]}{p,q} & = & B_\kappa^{ab}[\begin{array}[t]{@{}l}
+      \{\BREAK\} \ANNPOS{P_1}{p,0} \\
+      \ANNPOS{P_2}{0,0}\cdots\ANNPOS{P_{n-1}}{0,0} \\
+      \ANNPOS{P_n}{0,q}\{\BREAK\}]
+  \end{array}
+
+%%     &     & L_\kappa[P_1,\dots,P_n] & \mbox{(layout)} \\
+%%     &  |  & \BREAK & \mbox{(breakpoint)} \\
+%%     &  |  & \FENCED{P_1\cdots P_n} & \mbox{(fenced)} \\
+%%   V & ::= & & \mbox{(\bf variables)} \\
+%%     &     & \TVAR{x} & \mbox{(term variable)} \\
+%%     &  |  & \NVAR{x} & \mbox{(number variable)} \\
+%%     &  |  & \IVAR{x} & \mbox{(name variable)} \\[2ex]
+%%   M & ::= & & \mbox{(\bf magic patterns)} \\
+%%     &     & \verb+list0+~P~l? & \mbox{(possibly empty list)} \\
+%%     &  |  & \verb+list1+~P~l? & \mbox{(non-empty list)} \\
+%%     &  |  & \verb+opt+~P & \mbox{(option)} \\[2ex]
+\end{array}
+\]
+\hrule
+\end{table}
+
+\section{Level 2: abstract syntax}
+
+\newcommand{\NT}[1]{\langle\mathit{#1}\rangle}
+
+\begin{table}
+\caption{\label{tab:synl2} Concrete syntax of level 2 patterns.\strut}
+\hrule
+\[
+\begin{array}{@{}rcll@{}}
+  \NT{term} & ::= & & \mbox{\bf terms} \\
+    &     & x & \mbox{(identifier)} \\
+    &  |  & n & \mbox{(number)} \\
+    &  |  & s & \mbox{(symbol)} \\
+    &  |  & \mathrm{URI} & \mbox{(URI)} \\
+    &  |  & \verb+?+ & \mbox{(implicit)} \\
+    &  |  & \verb+%+ & \mbox{(placeholder)} \\
+    &  |  & \verb+?+n~[\verb+[+~\{\NT{subst}\}~\verb+]+] & \mbox{(meta)} \\
+    &  |  & \verb+let+~\NT{ptname}~\verb+\def+~\NT{term}~\verb+in+~\NT{term} \\
+    &  |  & \verb+let+~\NT{kind}~\NT{defs}~\verb+in+~\NT{term} \\
+    &  |  & \NT{binder}~\{\NT{ptnames}\}^{+}~\verb+.+~\NT{term} \\
+    &  |  & \NT{term}~\NT{term} & \mbox{(application)} \\
+    &  |  & \verb+Prop+ \mid \verb+Set+ \mid \verb+Type+ \mid \verb+CProp+ & \mbox{(sort)} \\
+    &  |  & [\verb+[+~\NT{term}~\verb+]+]~\verb+match+~\NT{term}~\verb+with [+~[\NT{rule}~\{\verb+|+~\NT{rule}\}]~\verb+]+ & \mbox{(pattern match)} \\
+    &  |  & \verb+(+~\NT{term}~\verb+:+~\NT{term}~\verb+)+ & \mbox{(cast)} \\
+    &  |  & \verb+(+~\NT{term}~\verb+)+ \\
+    &  |  & \BLOB(\NT{meta},\dots,\NT{meta}) & \mbox{(meta blob)} \\
+  \NT{defs}  & ::= & & \mbox{\bf mutual definitions} \\
+    &     & \NT{fun}~\{\verb+and+~\NT{fun}\} \\
+  \NT{fun} & ::= & & \mbox{\bf functions} \\
+    &     & \NT{arg}~\{\NT{ptnames}\}^{+}~[\verb+on+~x]~\verb+\def+~\NT{term} \\
+  \NT{binder} & ::= & & \mbox{\bf binders} \\
+    &     & \verb+\Pi+ \mid \verb+\exists+ \mid \verb+\forall+ \mid \verb+\lambda+ \\
+  \NT{arg} & ::= & & \mbox{\bf single argument} \\
+    &     & \verb+_+ \mid x \mid \BLOB(\NT{meta},\dots,\NT{meta}) \\
+  \NT{ptname} & ::= & & \mbox{\bf possibly typed name} \\
+    &     & \NT{arg} \\
+    &  |  & \verb+(+~\NT{arg}~\verb+:+~\NT{term}~\verb+)+ \\
+  \NT{ptnames} & ::= & & \mbox{\bf bound variables} \\
+    &     & \NT{arg} \\
+    &  |  & \verb+(+~\NT{arg}~\{\verb+,+~\NT{arg}\}~[\verb+:+~\NT{term}]~\verb+)+ \\
+  \NT{kind} & ::= & & \mbox{\bf induction kind} \\
+    &     & \verb+rec+ \mid \verb+corec+ \\
+  \NT{rule} & ::= & & \mbox{\bf rules} \\
+    &     & x~\{\NT{ptname}\}~\verb+\Rightarrow+~\NT{term} \\[10ex]
+
+  \NT{meta} & ::= & & \mbox{\bf meta} \\
+    &     & \BLOB(\NT{term},\dots,\NT{term}) & \mbox{(term blob)} \\
+    &  |  & [\verb+term+]~x \\
+    &  |  & \verb+number+~x \\
+    &  |  & \verb+ident+~x \\
+    &  |  & \verb+fresh+~x \\
+    &  |  & \verb+anonymous+ \\
+    &  |  & \verb+fold+~[\verb+left+\mid\verb+right+]~\NT{meta}~\verb+rec+~x~\NT{meta} \\
+    &  |  & \verb+default+~\NT{meta}~\NT{meta} \\
+    &  |  & \verb+if+~\NT{meta}~\verb+then+~\NT{meta}~\verb+else+~\NT{meta} \\
+    &  |  & \verb+fail+ 
+\end{array}
+\]
+\hrule
+\end{table}
+
+\begin{table}
+\caption{\label{tab:wfl2} Well-formedness rules for level 2 patterns.\strut}
+\hrule
+\[
+\renewcommand{\arraystretch}{3.5}
+\begin{array}{@{}c@{}}
+  \inference[\sc Constr]
+    {P_i :: D_i}
+    {\BLOB[P_1,\dots,P_n] :: D_i \oplus \cdots \oplus D_j} \\
+  \inference[\sc TermVar]
+    {}
+    {\mathtt{term}~x :: x : \mathtt{Term}}
+  \quad
+  \inference[\sc NumVar]
+    {}
+    {\mathtt{number}~x :: x : \mathtt{Number}}
+  \\
+  \inference[\sc IdentVar]
+    {}
+    {\mathtt{ident}~x :: x : \mathtt{String}}
+  \quad
+  \inference[\sc FreshVar]
+    {}
+    {\mathtt{fresh}~x :: x : \mathtt{String}}
+  \\
+  \inference[\sc Success]
+    {}
+    {\mathtt{anonymous} :: \emptyset}
+  \\
+  \inference[\sc Fold]
+    {P_1 :: D_1 & P_2 :: D_2 \oplus (x : \mathtt{Term}) & \DOMAIN(D_2)\ne\emptyset & \DOMAIN(D_1)\cap\DOMAIN(D_2)=\emptyset}
+    {\mathtt{fold}~P_1~\mathtt{rec}~x~P_2 :: D_1 \oplus D_2~\mathtt{List}}
+  \\
+  \inference[\sc Default]
+    {P_1 :: D \oplus D_1 & P_2 :: D & \DOMAIN(D_1) \ne \emptyset & \DOMAIN(D) \cap \DOMAIN(D_1) = \emptyset}
+    {\mathtt{default}~P_1~P_2 :: D \oplus D_1~\mathtt{Option}}
+  \\
+  \inference[\sc If]
+    {P_1 :: \emptyset & P_2 :: D & P_3 :: D }
+    {\mathtt{if}~P_1~\mathtt{then}~P_2~\mathtt{else}~P_3 :: D}
+  \qquad
+  \inference[\sc Fail]
+    {}
+    {\mathtt{fail} :: \emptyset}
+%%     &  |  & \verb+if+~\NT{meta}~\verb+then+~\NT{meta}~\verb+else+~\NT{meta} \\
+%%     &  |  & \verb+fail+ 
+\end{array}
+\]
+\hrule
+\end{table}
+
+\begin{table}
+ \caption{\label{tab:il2f1} Instantiation of level 2 patterns from level 1.
+ \strut}
+\hrule
+\[
+\begin{array}{rcll}
+
+\IOT{C[t_1,\dots,t_n]}{\mathcal{E}} & =
+& C[\IOT{t_1}{\mathcal{E}},\dots,\IOT{t_n}{\mathcal{E}}] \\
+
+\IOT{\mathtt{term}~x}{\mathcal{E}} & = & t & \mathcal{E}(x) = \mathtt{Term}~t \\
+
+\IOT{\mathtt{number}~x}{\mathcal{E}} & =
+& n & \mathcal{E}(x) = \mathtt{Number}~n \\
+
+\IOT{\mathtt{ident}~x}{\mathcal{E}} & =
+& y & \mathcal{E}(x) = \mathtt{String}~y \\
+
+\IOT{\mathtt{fresh}~x}{\mathcal{E}} & = & y & \mathcal{E}(x) = \mathtt{String}~y \\
+
+\IOT{\mathtt{default}~P_1~P_2}{\mathcal{E}} & =
+& \IOT{P_1}{\UPDATE{\mathcal{E}}{x_i|->v_i}}
+& \mathcal{E}(x_i)=\mathtt{Some}~v_i \\
+& & & \NAMES(P_1)\setminus\NAMES(P_2)=\{x_1,\dots,x_n\} \\
+
+\IOT{\mathtt{default}~P_1~P_2}{\mathcal{E}} & =
+& \IOT{P_2}{\UPDATE{\mathcal{E}}{x_i|->\bot}}
+& \mathcal{E}(x_i)=\mathtt{None} \\
+& & & \NAMES(P_1)\setminus\NAMES(P_2)=\{x_1,\dots,x_n\} \\
+
+\IOT{\mathtt{fold}~\mathtt{right}~P_1~\mathtt{rec}~x~P_2}{\mathcal{E}}
+& =
+& \IOT{P_1}{\mathcal{E}'}
+& \mathcal{E}(\NAMES(P_2)\setminus\{x\}) = \{[],\dots,[]\} \\
+& & \multicolumn{2}{l}{\mathcal{E}'=\UPDATE{\mathcal{E}}{\NAMES(P_2)\setminus\{x\}|->\bot}}
+\\
+
+\IOT{\mathtt{fold}~\mathtt{right}~P_1~\mathtt{rec}~x~P_2}{\mathcal{E}}
+& =
+& \IOT{P_2}{\mathcal{E}'}
+& \mathcal{E}(y_i) = [v_{i1},\dots,v_{in}] \\
+& & & \NAMES(P_2)\setminus\{x\}=\{y_1,\dots,y_m\} \\
+& & \multicolumn{2}{l}{\mathcal{E}'(y) =
+ \left\{
+ \begin{array}{@{}ll}
+ \IOT{\mathtt{fold}~\mathtt{right}~P_1~\mathtt{rec}~x~P_e}{\mathcal{E}''}
+               & y=x \\
+ v_{i1}                & y=y_i \\
+ \mathcal{E}(y) & \mbox{otherwise} \\
+ \end{array}
+ \right.} \\
+& & \multicolumn{2}{l}{\mathcal{E}''(y) =
+ \left\{
+ \begin{array}{@{}ll}
+ [v_{i2};\dots;v_{in}] & y=y_i \\
+ \mathcal{E}(y)        & \mbox{otherwise} \\
+ \end{array}
+ \right.} \\
+
+\IOT{\mathtt{fold}~\mathtt{left}~P_1~\mathtt{rec}~x~P_2}{\mathcal{E}}
+& =
+& \mathit{eval\_fold}(x,P_2,\mathcal{E}')
+& \\
+& & \multicolumn{2}{l}{\mathcal{E}' = \UPDATE{\mathcal{E}}{x|->
+\IOT{P_1}{\UPDATE{\mathcal{E}}{\NAMES(P_2)|->\bot}}}} \\
+
+\mathit{eval\_fold}(x,P,\mathcal{E})
+& =
+& \mathcal{E}(x)
+& \mathcal{E}(\NAMES(P)\setminus\{x\})=\{[],\dots,[]\} \\
+
+\mathit{eval\_fold}(x,P,\mathcal{E})
+& =
+& \mathit{eval\_fold}(x,P,\mathcal{E}')
+& \mathcal{E}(y_i) = [v_{i1},\dots,v_{in}] \\
+& & & \NAMES(P)\setminus{x}=\{y_1,\dots,y_m\} \\
+&
+& \multicolumn{2}{l}{\mathcal{E}' = \UPDATE{\mathcal{E}}{x|->\IOT{P}{\mathcal{E}''}; ~ y_i |-> [v_{i2};\dots;v_{in_i}]}}
+\\
+&
+& \multicolumn{2}{l}{\mathcal{E}''(y) =
+\left\{
+\begin{array}{ll}
+ v_1           & y\in \NAMES(P)\setminus\{x\} \\
+ \mathcal{E}(x) & y=x \\
+ \bot          & \mathit{otherwise} \\
+\end{array}
+\right.
+}
+\\
+
+\end{array} \\
+\]
+\end{table}
+
+\begin{table}
+\caption{\label{tab:l2match} Pattern matching of level 2 terms.\strut}
+\hrule
+\[
+\renewcommand{\arraystretch}{3.5}
+\begin{array}{@{}c@{}}
+  \inference[\sc Constr]
+    {t_i \in P_i ~> \mathcal E_i & i\ne j => \DOMAIN(\mathcal E_i)\cap\DOMAIN(\mathcal E_j)=\emptyset}
+    {C[t_1,\dots,t_n] \in C[P_1,\dots,P_n] ~> \mathcal E_1 \oplus \cdots \oplus \mathcal E_n}
+  \\
+  \inference[\sc TermVar]
+    {}
+    {t \in [\mathtt{term}]~x ~> [x |-> \mathtt{Term}~t]}
+  \quad
+  \inference[\sc NumVar]
+    {}
+    {n \in \mathtt{number}~x ~> [x |-> \mathtt{Number}~n]}
+  \\
+  \inference[\sc IdentVar]
+    {}
+    {x \in \mathtt{ident}~x ~> [x |-> \mathtt{String}~x]}
+  \quad
+  \inference[\sc FreshVar]
+    {}
+    {x \in \mathtt{fresh}~x ~> [x |-> \mathtt{String}~x]}
+  \\
+  \inference[\sc Success]
+    {}
+    {t \in \mathtt{anonymous} ~> \emptyset}
+  \\
+  \inference[\sc DefaultT]
+    {t \in P_1 ~> \mathcal E}
+    {t \in \mathtt{default}~P_1~P_2 ~> \mathcal E'}
+    \quad
+    \mathcal E'(x) = \left\{
+    \renewcommand{\arraystretch}{1}
+    \begin{array}{ll}
+      \mathtt{Some}~\mathcal{E}(x) & x \in \NAMES(P_1) \setminus \NAMES(P_2) \\
+      \mathcal{E}(x) & \mbox{otherwise}
+    \end{array}
+    \right.
+  \\
+  \inference[\sc DefaultF]
+    {t \not\in P_1 & t \in P_2 ~> \mathcal E}
+    {t \in \mathtt{default}~P_1~P_2 ~> \mathcal E'}
+    \quad
+    \mathcal E'(x) = \left\{
+    \renewcommand{\arraystretch}{1}
+    \begin{array}{ll}
+      \mathtt{None} & x \in \NAMES(P_1) \setminus \NAMES(P_2) \\
+      \mathcal{E}(x) & \mbox{otherwise}
+    \end{array}
+    \right.
+  \\
+  \inference[\sc IfT]
+    {t \in P_1 ~> \mathcal E' & t \in P_2 ~> \mathcal E}
+    {t \in \mathtt{if}~P_1~\mathtt{then}~P_2~\mathtt{else}~P_3 ~> \mathcal E}
+  \quad
+  \inference[\sc IfF]
+    {t \not\in P_1 & t \in P_3 ~> \mathcal E}
+    {t \in \mathtt{if}~P_1~\mathtt{then}~P_2~\mathtt{else}~P_3 ~> \mathcal E}
+  \\
+  \inference[\sc FoldRec]
+    {t \in P_2 ~> \mathcal E & \mathcal{E}(x) \in \mathtt{fold}~d~P_1~\mathtt{rec}~x~P_2 ~> \mathcal E'}
+    {t \in \mathtt{fold}~d~P_1~\mathtt{rec}~x~P_2 ~> \mathcal E''}
+  \\
+  \mbox{where}~\mathcal{E}''(y) = \left\{
+    \renewcommand{\arraystretch}{1}
+    \begin{array}{ll}
+      \mathcal{E}(y)::\mathcal{E}'(y) & y \in \NAMES(P_2) \setminus \{x\} \wedge d = \mathtt{right} \\
+      \mathcal{E}'(y)@[\mathcal{E}(y)] & y \in \NAMES(P_2) \setminus \{x\} \wedge d = \mathtt{left} \\
+      \mathcal{E}'(y) & \mbox{otherwise}
+    \end{array}  
+  \right.
+  \\
+  \inference[\sc FoldBase]
+    {t \not\in P_2 & t \in P_1 ~> \mathcal E}
+    {t \in \mathtt{fold}~P_1~\mathtt{rec}~x~P_2 ~> \mathcal E'}
+  \quad
+  \mathcal E'(y) = \left\{
+    \renewcommand{\arraystretch}{1}
+    \begin{array}{ll}
+      [] & y \in \NAMES(P_2) \setminus \{x\} \\
+      \mathcal{E}(y) & \mbox{otherwise}
+    \end{array}  
+  \right.
+\end{array}
+\]
+\hrule
+\end{table}
+
+\begin{table}
+ \caption{\label{tab:synl3} Abstract syntax of level 3 terms and patterns.}
+ \hrule
+ \[
+ \begin{array}{@{}ll@{}}
+  \begin{array}[t]{rcll}
+   T & : := &   & \mbox{(\bf terms)} \\
+     &      & u & \mbox{(uri)} \\
+     &  |   & \lambda x.T & \mbox{($\lambda$-abstraction)} \\
+     &  |   & (T_1 \dots T_n) & \mbox{(application)} \\
+     &  |   & \dots \\[2ex]
+  \end{array} &
+  \begin{array}[t]{rcll}
+   P & : := &   & \mbox{(\bf patterns)} \\
+     &      & u & \mbox{(uri)} \\
+     &  |   & V & \mbox{(variable)} \\
+     &  |   & (P_1 \dots P_n) & \mbox{(application)} \\[2ex]
+   V & : := &   & \mbox{(\bf variables)} \\
+     &      & \TVAR{x} & \mbox{(term variable)} \\
+     &  |   & \IMPVAR & \mbox{(implicit variable)} \\
+  \end{array} \\
+ \end{array}
+ \]
+ \hrule
+\end{table}
+
+\begin{table}
+\caption{\label{tab:wfl3} Well-formedness rules for level 3 patterns.\strut}
+\hrule
+\[
+\renewcommand{\arraystretch}{3.5}
+\begin{array}{@{}c@{}}
+ \inference[\sc Uri] {} {u :: \emptyset} \quad
+ \inference[\sc ImpVar] {} {\TVAR{x} :: \emptyset} \quad
+ \inference[\sc TermVar] {} {\TVAR{x} :: x:\mathtt{Term}} \\
+ \inference[\sc Appl]
+  {P_i :: D_i
+   \quad \forall i,j,i\neq j=>\DOMAIN(D_i)\cap\DOMAIN(D_j)=\emptyset}
+  {P_1\cdots P_n :: D_1\oplus\cdots\oplus D_n} \\
+\end{array}
+\]
+\hrule
+\end{table}
+
+\begin{table}
+ \caption{\label{tab:synargp} Abstract syntax of applicative symbol patterns.}
+ \hrule
+ \[
+ \begin{array}{rcll}
+  P & : := &           & \mbox{(\bf patterns)} \\
+    &      & s ~ \{ \mathit{arg} \} & \mbox{(symbol pattern)} \\[2ex]
+  \mathit{arg} & : := & & \mbox{(\bf argument)} \\
+    &      & \TVAR{x} & \mbox{(term variable)} \\
+    &  |   & \eta.\mathit{arg} & \mbox{($\eta$-abstraction)} \\
+ \end{array}
+ \]
+ \hrule
+\end{table}
+
+\begin{table}
+\caption{\label{tab:wfargp} Well-formedness rules for applicative symbol
+patterns.\strut}
+\hrule
+\[
+\renewcommand{\arraystretch}{3.5}
+\begin{array}{@{}c@{}}
+ \inference[\sc Pattern]
+  {\mathit{arg}_i :: D_i
+   \quad \forall i,j,i\neq j=>\DOMAIN(D_i)\cap\DOMAIN(D_j)=\emptyset}
+  {s~\mathit{arg}_1\cdots\mathit{arg}_n :: D_1\oplus\cdots\oplus D_n} \\
+ \inference[\sc TermVar]
+  {}
+  {\TVAR{x} :: x : \mathtt{Term}}
+ \quad
+ \inference[\sc EtaAbs]
+  {\mathit{arg} :: D}
+  {\eta.\mathit{arg} :: D}
+ \\
+\end{array}
+\]
+\hrule
+\end{table}
+
+\begin{table}
+\caption{\label{tab:l3match} Pattern matching of level 3 terms.\strut}
+\hrule
+\[
+\renewcommand{\arraystretch}{3.5}
+\begin{array}{@{}c@{}}
+ \inference[\sc Uri] {} {u\in u ~> []} \quad
+ \inference[\sc Appl] {t_i\in P_i ~> \mathcal{E}_i}
+  {(t_1\dots t_n)\in(P_1\dots P_n) ~>
+   \mathcal{E}_1\oplus\cdots\oplus\mathcal{E}_n} \\
+ \inference[\sc TermVar] {} {t\in \TVAR{x} ~> [x |-> \mathtt{Term}~t]} \quad
+ \inference[\sc ImpVar] {} {t\in \IMPVAR ~> []} \\
+\end{array}
+\]
+\hrule
+\end{table}
+
+\begin{table}
+\caption{\label{tab:iapf3} Instantiation of applicative symbol patterns (from
+level 3).\strut}
+\hrule
+\[
+\begin{array}{rcll}
+ \IAP{s~a_1\cdots a_n}{\mathcal{E}} & = &
+  (s~\IAPP{a_1}{\mathcal{E}}{0}\cdots\IAPP{a_n}{\mathcal{E}}{0}) & \\
+ \IAPP{\TVAR{x}}{\mathcal{E}}{0} & = & t & \mathcal{E}(x)=\mathtt{Term}~t \\
+ \IAPP{\TVAR{x}}{\mathcal{E}}{i+1} & = & \lambda y.\IAPP{t}{\mathcal{E}}{i}
+  & \mathcal{E}(x)=\mathtt{Term}~\lambda y.t \\
+ \IAPP{\TVAR{x}}{\mathcal{E}}{i+1} & =
+  & \lambda y_1.\cdots.\lambda y_{i+1}.t~y_1\cdots y_{i+1}
+  & \mathcal{E}(x)=\mathtt{Term}~t\wedge\forall y,t\neq\lambda y.t \\
+ \IAPP{\eta.a}{\mathcal{E}}{i} & = & \IAPP{a}{\mathcal{E}}{i+1} \\
+\end{array}
+\]
+\hrule
+\end{table}
+
+\section{Type checking}
+
+\subsection{Level 1 $<->$ Level 2}
+
+\newcommand{\GUARDED}{\mathit{guarded}}
+\newcommand{\TRUE}{\mathit{true}}
+\newcommand{\FALSE}{\mathit{false}}
+
+\newcommand{\TN}{\mathit{tn}}
+
+\begin{table}
+\caption{\label{tab:guarded} Guarded condition of level 2
+pattern. Note that the recursive case of the \texttt{fold} magic is
+not explicitly required to be guarded. The point is that it must
+contain at least two distinct names, and this guarantees that whatever
+is matched by the recursive pattern, the terms matched by those two
+names will be smaller than the whole matched term.\strut} \hrule
+\[
+\begin{array}{rcll}
+  \GUARDED(C(M(P))) & = & \GUARDED(P) \\
+  \GUARDED(C(t_1,\dots,t_n)) & = & \TRUE \\
+  \GUARDED(\mathtt{term}~x) & = & \FALSE \\
+  \GUARDED(\mathtt{number}~x) & = & \FALSE \\
+  \GUARDED(\mathtt{ident}~x) & = & \FALSE \\
+  \GUARDED(\mathtt{fresh}~x) & = & \FALSE \\
+  \GUARDED(\mathtt{anonymous}) & = & \TRUE \\
+  \GUARDED(\mathtt{default}~P_1~P_2) & = & \GUARDED(P_1) \wedge \GUARDED(P_2) \\
+  \GUARDED(\mathtt{if}~P_1~\mathtt{then}~P_2~\mathtt{else}~P_3) & = & \GUARDED(P_2) \wedge \GUARDED(P_3) \\
+  \GUARDED(\mathtt{fail}) & = & \TRUE \\
+  \GUARDED(\mathtt{fold}~d~P_1~\mathtt{rec}~x~P_2) & = & \GUARDED(P_1)
+\end{array}
+\]
+\hrule
+\end{table}
+
+%% Assume that we have two corresponding patterns $P_1$ (level 1) and
+%% $P_2$ (level 2) and that we have to check whether they are
+%% ``correct''. First we define the notion of \emph{top-level names} of
+%% $P_1$ and $P_2$, as follows:
+%% \[
+%% \begin{array}{rcl}
+%%   \TN(C_1[P'_1,\dots,P'_2]) & = & \TN(P'_1) \cup \cdots \cup \TN(P'_2) \\
+%%   \TN(\TVAR{x}) & = & \{x\} \\
+%%   \TN(\NVAR{x}) & = & \{x\} \\
+%%   \TN(\IVAR{x}) & = & \{x\} \\
+%%   \TN(\mathtt{list0}~P'~l?) & = & \emptyset \\
+%%   \TN(\mathtt{list1}~P'~l?) & = & \emptyset \\
+%%   \TN(\mathtt{opt}~P') & = & \emptyset \\[3ex]
+%%   \TN(\BLOB(P''_1,\dots,P''_2)) & = & \TN(P''_1) \cup \cdots \cup \TN(P''_2) \\
+%%   \TN(\mathtt{term}~x) & = & \{x\} \\
+%%   \TN(\mathtt{number}~x) & = & \{x\} \\
+%%   \TN(\mathtt{ident}~x) & = & \{x\} \\
+%%   \TN(\mathtt{fresh}~x) & = & \{x\} \\
+%%   \TN(\mathtt{anonymous}) & = & \emptyset \\
+%%   \TN(\mathtt{fold}~P''_1~\mathtt{rec}~x~P''_2) & = & \TN(P''_1) \\
+%%   \TN(\mathtt{default}~P''_1~P''_2) & = & \TN(P''_1) \cap \TN(P''_2) \\
+%%   \TN(\mathtt{if}~P''_1~\mathtt{then}~P''_2~\mathtt{else}~P''_3) & = & \TN(P''_2) \\
+%%   \TN(\mathtt{fail}) & = & \emptyset
+%% \end{array}
+%% \]
+
+We say that a \emph{bidirectional transformation}
+\[
+  P_1 <=> P_2
+\]
+is well-formed if:
+\begin{itemize}
+  \item $P_1$ is a well-formed \emph{level 1 pattern} in some context $D$ and
+  $P_2$ is a well-formed \emph{level 2 pattern} in the very same context $D$,
+  that is $P_1 :: D$ and $P_2 :: D$;
+  \item the pattern $P_2$ is guarded, that is $\GUARDED(P_2)=\TRUE$;
+  \item for any direct sub-pattern $\mathtt{opt}~P'_1$ of $P_1$ such
+    that $\mathtt{opt}~P'_1 :: X$ there is a sub-pattern
+    $\mathtt{default}~P'_2~P''_2$ of $P_2$ such that
+    $\mathtt{default}~P'_2~P''_2 :: X \oplus Y$ for some context $Y$;
+  \item for any direct sub-pattern $\mathtt{list}~P'_1~l?$ of $P_1$
+    such that $\mathtt{list}~P'_1~l? :: X$ there is a sub-pattern
+    $\mathtt{fold}~P'_2~\mathtt{rec}~x~P''_2$ of $P_2$ such that
+    $\mathtt{fold}~P'_2~\mathtt{rec}~x~P''_2 :: X \oplus Y$ for some
+    context $Y$.
+\end{itemize}
+
+A \emph{left-to-right transformation}
+\[
+  P_1 => P_2
+\]
+is well-formed if $P_2$ does not contain \texttt{if}, \texttt{fail},
+or \texttt{anonymous} meta patterns.
+
+Note that the transformations are in a sense asymmetric. Moving from
+the concrete syntax (level 1) to the abstract syntax (level 2) we
+forget about syntactic details. Moving from the abstract syntax to the
+concrete syntax we may want to forget about redundant structure
+(types).
+
+Relationship with grammatical frameworks?
+
+\subsection{Level 2 $<->$ Level 3}
+
+We say that an \emph{interpretation}
+\[
+ P_2 <=> P_3
+\]
+is well-formed if:
+\begin{itemize}
+ \item $P_2$ is a well-formed \emph{applicative symbol pattern} in some context
+  $D$ and $P_3$ is a well-formed \emph{level 3 pattern} in the very same
+  context $D$, that is $P_2 :: D$ and $P_3 :: D$.
+\end{itemize}
+
index f4eb86c6073b3f02a3e77970a86246569c0e9372..36d35026c309c511212cb85e59404038e3c549a5 100644 (file)
 \begin{document}
   \maketitle
 
-\section{Environment}
-
-\[
-\begin{array}{rcll}
-  V & ::= & & \mbox{(\bf values)} \\
-    &     & \verb+Term+~T & \mbox{(term)} \\
-    &  |  & \verb+String+~s & \mbox{(string)} \\
-    &  |  & \verb+Number+~n & \mbox{(number)} \\
-    &  |  & \verb+None+ & \mbox{(optional value)} \\
-    &  |  & \verb+Some+~V & \mbox{(optional value)} \\
-    &  |  & [V_1,\dots,V_n] & \mbox{(list value)} \\[2ex]
-\end{array}
-\]
-
-An environment is a map $\mathcal E : \mathit{Name} -> V$.
-
-\section{Level 1: concrete syntax}
-
-\begin{table}
-\caption{\label{tab:l1c} Concrete syntax of level 1 patterns.\strut}
-\hrule
-\[
-\begin{array}{rcll}
-  P & ::= & & \mbox{(\bf patterns)} \\
-    &     & S^{+} \\[2ex]
-  S & ::= & & \mbox{(\bf simple patterns)} \\
-    &     & l \\
-    &  |  & S~\verb+\sub+~S\\
-    &  |  & S~\verb+\sup+~S\\
-    &  |  & S~\verb+\below+~S\\
-    &  |  & S~\verb+\atop+~S\\
-    &  |  & S~\verb+\over+~S\\
-    &  |  & S~\verb+\atop+~S\\
-    &  |  & \verb+\frac+~S~S \\
-    &  |  & \verb+\sqrt+~S \\
-    &  |  & \verb+\root+~S~\verb+\of+~S \\
-    &  |  & \verb+(+~P~\verb+)+ \\
-    &  |  & \verb+hbox (+~P~\verb+)+ \\
-    &  |  & \verb+vbox (+~P~\verb+)+ \\
-    &  |  & \verb+hvbox (+~P~\verb+)+ \\
-    &  |  & \verb+hovbox (+~P~\verb+)+ \\
-    &  |  & \verb+break+ \\
-    &  |  & \verb+list0+~S~[\verb+sep+~l] \\
-    &  |  & \verb+list1+~S~[\verb+sep+~l] \\
-    &  |  & \verb+opt+~S \\
-    &  |  & [\verb+term+]~x \\
-    &  |  & \verb+number+~x \\
-    &  |  & \verb+ident+~x \\
-\end{array}
-\]
-\hrule
-\end{table}
-
-Rationale: while the layout schemata can occur in the concrete syntax
-used by user, the box schemata and the magic patterns can only occur
-when defining the notation. This is why the layout schemata are
-``escaped'' with a backslash, so that they cannot be confused with
-plain identifiers, wherease the others are not. Alternatively, they
-could be defined as keywords, but this would prevent their names to be
-used in different contexts.
-
-\begin{table}
-\caption{\label{tab:l1a} Abstract syntax of level 1 terms and patterns.\strut}
-\hrule
-\[
-\begin{array}{@{}ll@{}}
-\begin{array}[t]{rcll}
-  T & ::= & & \mbox{(\bf terms)} \\
-    &     & L_\kappa[T_1,\dots,T_n] & \mbox{(layout)} \\
-    &  |  & B_\kappa^{ab}[T_1\cdots T_n] & \mbox{(box)} \\
-    &  |  & \BREAK & \mbox{(breakpoint)} \\
-    &  |  & \FENCED{T_1\cdots T_n} & \mbox{(fenced)} \\
-    &  |  & l & \mbox{(literal)} \\[2ex]
-  P & ::= & & \mbox{(\bf patterns)} \\
-    &     & L_\kappa[P_1,\dots,P_n] & \mbox{(layout)} \\
-    &  |  & B_\kappa^{ab}[P_1\cdots P_n] & \mbox{(box)} \\
-    &  |  & \BREAK & \mbox{(breakpoint)} \\
-    &  |  & \FENCED{P_1\cdots P_n} & \mbox{(fenced)} \\
-    &  |  & M & \mbox{(magic)} \\
-    &  |  & V & \mbox{(variable)} \\
-    &  |  & l & \mbox{(literal)} \\
-\end{array} &
-\begin{array}[t]{rcll}
-  V & ::= & & \mbox{(\bf variables)} \\
-    &     & \TVAR{x} & \mbox{(term variable)} \\
-    &  |  & \NVAR{x} & \mbox{(number variable)} \\
-    &  |  & \IVAR{x} & \mbox{(name variable)} \\[2ex]
-  M & ::= & & \mbox{(\bf magic patterns)} \\
-    &     & \verb+list0+~P~l? & \mbox{(possibly empty list)} \\
-    &  |  & \verb+list1+~P~l? & \mbox{(non-empty list)} \\
-    &  |  & \verb+opt+~P & \mbox{(option)} \\[2ex]
-\end{array}
-\end{array}
-\]
-\hrule
-\end{table}
-
-\[
-\ITO{\cdot}{{}} : P -> \mathit{Env} -> T
-\]
-
-\begin{table}
-\caption{\label{tab:il1f2} Instantiation of level 1 patterns from level 2.\strut}
-\hrule
-\[
-\begin{array}{rcll}
-  \ITO{L_\kappa[P_1,\dots,P_n]}{E} & = & L_\kappa[\ITO{(P_1)}{E},\dots,\ITO{(P_n)}{E} ] \\
-  \ITO{B_\kappa^{ab}[P_1\cdots P_n]}{E} & = & B_\kappa^{ab}[\ITO{P_1}{E}\cdots\ITO{P_n}{E}] \\
-  \ITO{\BREAK}{E} & = & \BREAK \\
-  \ITO{(P)}{E} & = & \ITO{P}{E} \\
-  \ITO{(P_1\cdots P_n)}{E} & = & B_H^{00}[\ITO{P_1}{E}\cdots\ITO{P_n}{E}] \\
-  \ITO{\TVAR{x}}{E} & = & t & \mathcal{E}(x) = \verb+Term+~t \\
-  \ITO{\NVAR{x}}{E} & = & l & \mathcal{E}(x) = \verb+Number+~l \\
-  \ITO{\IVAR{x}}{E} & = & l & \mathcal{E}(x) = \verb+String+~l \\
-  \ITO{\mathtt{opt}~P}{E} & = & \varepsilon & \mathcal{E}(\NAMES(P)) = \{\mathtt{None}\} \\
-  \ITO{\mathtt{opt}~P}{E} & = & \ITO{P}{E'} & \mathcal{E}(\NAMES(P)) = \{\mathtt{Some}~v_1,\dots,\mathtt{Some}~v_n\} \\
-  & & & \mathcal{E}'(x)=\left\{
-  \begin{array}{@{}ll}
-    v, & \mathcal{E}(x) = \mathtt{Some}~v \\
-    \mathcal{E}(x), & \mbox{otherwise}
-  \end{array}
-  \right. \\
-  \ITO{\mathtt{list}k~P~l?}{E} & = & \ITO{P}{{E}_1}~{l?}\cdots {l?}~\ITO{P}{{E}_n} &
-    \mathcal{E}(\NAMES(P)) = \{[v_{11},\dots,v_{1n}],\dots,[v_{m1},\dots,v_{mn}]\} \\
-    & & & n\ge k \\
-  & & & \mathcal{E}_i(x) = \left\{
-  \begin{array}{@{}ll}
-    v_i, & \mathcal{E}(x) = [v_1,\dots,v_n] \\
-    \mathcal{E}(x), & \mbox{otherwise}
-  \end{array}
-  \right. \\
-  \ITO{l}{E} & = & l \\
-
-%%     &  |  & (P) & \mbox{(fenced)} \\
-%%     &  |  & M & \mbox{(magic)} \\
-%%     &  |  & V & \mbox{(variable)} \\
-%%     &  |  & l & \mbox{(literal)} \\[2ex]
-%%   V & ::= & & \mbox{(\bf variables)} \\
-%%     &     & \TVAR{x} & \mbox{(term variable)} \\
-%%     &  |  & \NVAR{x} & \mbox{(number variable)} \\
-%%     &  |  & \IVAR{x} & \mbox{(name variable)} \\[2ex]
-%%   M & ::= & & \mbox{(\bf magic patterns)} \\
-%%     &     & \verb+list0+~S~l? & \mbox{(possibly empty list)} \\
-%%     &  |  & \verb+list1+~S~l? & \mbox{(non-empty list)} \\
-%%     &  |  & \verb+opt+~S & \mbox{(option)} \\[2ex]  
-\end{array}
-\]
-\hrule
-\end{table}
-
-\begin{table}
-\caption{\label{tab:wfl0} Well-formedness rules for level 1 patterns.\strut}
-\hrule
-\[
-\renewcommand{\arraystretch}{3.5}
-\begin{array}[t]{@{}c@{}}
-  \inference[\sc layout]
-    {P_i :: D_i & \forall i,j, i\ne j => \DOMAIN(D_i) \cap \DOMAIN(D_j) = \emptyset}
-    {L_\kappa[P_1,\dots,P_n] :: D_1\oplus\cdots\oplus D_n}
-  \\
-  \inference[\sc box]
-    {P_i :: D_i & \forall i,j, i\ne j => \DOMAIN(D_i) \cap \DOMAIN(D_j) = \emptyset}
-    {B_\kappa^{ab}[P_1\cdots P_n] :: D_1\oplus\cdots\oplus D_n}
-  \\
-  \inference[\sc fenced]
-    {P_i :: D_i & \forall i,j, i\ne j => \DOMAIN(D_i) \cap \DOMAIN(D_j) = \emptyset}
-    {\FENCED{P_1\cdots P_n} :: D_1\oplus\cdots\oplus D_n}
-  \\
-  \inference[\sc breakpoint]
-    {}
-    {\BREAK :: \emptyset}
-  \qquad
-  \inference[\sc literal]
-    {}
-    {l :: \emptyset}
-  \qquad
-  \inference[\sc tvar]
-    {}
-    {\TVAR{x} :: \TVAR{x}}
-  \\
-  \inference[\sc nvar]
-    {}
-    {\NVAR{x} :: \NVAR{x}}
-  \qquad
-  \inference[\sc ivar]
-    {}
-    {\IVAR{x} :: \IVAR{x}}
-  \\
-  \inference[\sc list0]
-    {P :: D & \forall x\in\DOMAIN(D), D'(x) = D(x)~\mathtt{List}}
-    {\mathtt{list0}~P~l? :: D'}
-  \\
-  \inference[\sc list1]
-    {P :: D & \forall x\in\DOMAIN(D), D'(x) = D(x)~\mathtt{List}}
-    {\mathtt{list1}~P~l? :: D'}
-  \\
-  \inference[\sc opt]
-    {P :: D & \forall x\in\DOMAIN(D), D'(x) = D(x)~\mathtt{Option}}
-    {\mathtt{opt}~P :: D'}
-\end{array}
-\]
-\hrule
-\end{table}
-
-\newcommand{\ATTRS}[1]{\langle#1\rangle}
-\newcommand{\ANNPOS}[2]{\mathit{pos}(#1)_{#2}}
-
-\begin{table}
-\caption{\label{tab:addparens} Can't read the AST and need parentheses? Here you go!.\strut}
-\hrule
-\[
-\begin{array}{rcll}
-  \ADDPARENS{l}{n} & = & l \\
-  \ADDPARENS{\BREAK}{n} & = & \BREAK \\
-  \ADDPARENS{\ATTRS{\mathit{prec}=m}T}{n} & = & \ADDPARENS{T}{m} & n < m \\
-  \ADDPARENS{\ATTRS{\mathit{prec}=m}T}{n} & = & \FENCED{\ADDPARENS{T}{\bot}} & n > m \\
-  \ADDPARENS{\ATTRS{\mathit{prec}=n,\mathit{assoc}=L,\mathit{pos}=R}T}{n} & = & \FENCED{\ADDPARENS{T}{\bot}} \\
-  \ADDPARENS{\ATTRS{\mathit{prec}=n,\mathit{assoc}=R,\mathit{pos}=L}T}{n} & = & \FENCED{\ADDPARENS{T}{\bot}} \\
-  \ADDPARENS{\ATTRS{\cdots}T}{n} & = & \ADDPARENS{T}{n} \\
-  \ADDPARENS{L_\kappa[T_1,\dots,\underline{T_k},\dots,T_m]}{n} & = & L_\kappa[\ADDPARENS{T_1}{n},\dots,\ADDPARENS{T_k}{\bot},\dots,\ADDPARENS{T_m}{n}] \\
-  \ADDPARENS{B_\kappa^{ab}[T_1,\dots,T_m]}{n} & = & B_\kappa^{ab}[\ADDPARENS{T_1}{n},\dots,\ADDPARENS{T_m}{n}]
-\end{array}
-\]
-\hrule
-\end{table}
-
-\begin{table}
-\caption{\label{tab:annpos} Annotation of level 1 meta variable with position information.\strut}
-\hrule
-\[
-\begin{array}{rcll}
-  \ANNPOS{l}{p,q} & = & l \\
-  \ANNPOS{\BREAK}{p,q} & = & \BREAK \\
-  \ANNPOS{x}{1,0} & = & \ATTRS{\mathit{pos}=L}{x} \\
-  \ANNPOS{x}{0,1} & = & \ATTRS{\mathit{pos}=R}{x} \\
-  \ANNPOS{x}{p,q} & = & \ATTRS{\mathit{pos}=I}{x} \\
-  \ANNPOS{B_\kappa^{ab}[P]}{p,q} & = & B_\kappa^{ab}[\ANNPOS{P}{p,q}] \\
-  \ANNPOS{B_\kappa^{ab}[\{\BREAK\} P_1\cdots P_n\{\BREAK\}]}{p,q} & = & B_\kappa^{ab}[\begin{array}[t]{@{}l}
-      \{\BREAK\} \ANNPOS{P_1}{p,0} \\
-      \ANNPOS{P_2}{0,0}\cdots\ANNPOS{P_{n-1}}{0,0} \\
-      \ANNPOS{P_n}{0,q}\{\BREAK\}]
-  \end{array}
-
-%%     &     & L_\kappa[P_1,\dots,P_n] & \mbox{(layout)} \\
-%%     &  |  & \BREAK & \mbox{(breakpoint)} \\
-%%     &  |  & \FENCED{P_1\cdots P_n} & \mbox{(fenced)} \\
-%%   V & ::= & & \mbox{(\bf variables)} \\
-%%     &     & \TVAR{x} & \mbox{(term variable)} \\
-%%     &  |  & \NVAR{x} & \mbox{(number variable)} \\
-%%     &  |  & \IVAR{x} & \mbox{(name variable)} \\[2ex]
-%%   M & ::= & & \mbox{(\bf magic patterns)} \\
-%%     &     & \verb+list0+~P~l? & \mbox{(possibly empty list)} \\
-%%     &  |  & \verb+list1+~P~l? & \mbox{(non-empty list)} \\
-%%     &  |  & \verb+opt+~P & \mbox{(option)} \\[2ex]
-\end{array}
-\]
-\hrule
-\end{table}
-
-\section{Level 2: abstract syntax}
-
-\newcommand{\NT}[1]{\langle\mathit{#1}\rangle}
-
-\begin{table}
-\caption{\label{tab:synl2} Concrete syntax of level 2 patterns.\strut}
-\hrule
-\[
-\begin{array}{@{}rcll@{}}
-  \NT{term} & ::= & & \mbox{\bf terms} \\
-    &     & x & \mbox{(identifier)} \\
-    &  |  & n & \mbox{(number)} \\
-    &  |  & s & \mbox{(symbol)} \\
-    &  |  & \mathrm{URI} & \mbox{(URI)} \\
-    &  |  & \verb+?+ & \mbox{(implicit)} \\
-    &  |  & \verb+%+ & \mbox{(placeholder)} \\
-    &  |  & \verb+?+n~[\verb+[+~\{\NT{subst}\}~\verb+]+] & \mbox{(meta)} \\
-    &  |  & \verb+let+~\NT{ptname}~\verb+\def+~\NT{term}~\verb+in+~\NT{term} \\
-    &  |  & \verb+let+~\NT{kind}~\NT{defs}~\verb+in+~\NT{term} \\
-    &  |  & \NT{binder}~\{\NT{ptnames}\}^{+}~\verb+.+~\NT{term} \\
-    &  |  & \NT{term}~\NT{term} & \mbox{(application)} \\
-    &  |  & \verb+Prop+ \mid \verb+Set+ \mid \verb+Type+ \mid \verb+CProp+ & \mbox{(sort)} \\
-    &  |  & [\verb+[+~\NT{term}~\verb+]+]~\verb+match+~\NT{term}~\verb+with [+~[\NT{rule}~\{\verb+|+~\NT{rule}\}]~\verb+]+ & \mbox{(pattern match)} \\
-    &  |  & \verb+(+~\NT{term}~\verb+:+~\NT{term}~\verb+)+ & \mbox{(cast)} \\
-    &  |  & \verb+(+~\NT{term}~\verb+)+ \\
-    &  |  & \BLOB(\NT{meta},\dots,\NT{meta}) & \mbox{(meta blob)} \\
-  \NT{defs}  & ::= & & \mbox{\bf mutual definitions} \\
-    &     & \NT{fun}~\{\verb+and+~\NT{fun}\} \\
-  \NT{fun} & ::= & & \mbox{\bf functions} \\
-    &     & \NT{arg}~\{\NT{ptnames}\}^{+}~[\verb+on+~x]~\verb+\def+~\NT{term} \\
-  \NT{binder} & ::= & & \mbox{\bf binders} \\
-    &     & \verb+\Pi+ \mid \verb+\exists+ \mid \verb+\forall+ \mid \verb+\lambda+ \\
-  \NT{arg} & ::= & & \mbox{\bf single argument} \\
-    &     & \verb+_+ \mid x \mid \BLOB(\NT{meta},\dots,\NT{meta}) \\
-  \NT{ptname} & ::= & & \mbox{\bf possibly typed name} \\
-    &     & \NT{arg} \\
-    &  |  & \verb+(+~\NT{arg}~\verb+:+~\NT{term}~\verb+)+ \\
-  \NT{ptnames} & ::= & & \mbox{\bf bound variables} \\
-    &     & \NT{arg} \\
-    &  |  & \verb+(+~\NT{arg}~\{\verb+,+~\NT{arg}\}~[\verb+:+~\NT{term}]~\verb+)+ \\
-  \NT{kind} & ::= & & \mbox{\bf induction kind} \\
-    &     & \verb+rec+ \mid \verb+corec+ \\
-  \NT{rule} & ::= & & \mbox{\bf rules} \\
-    &     & x~\{\NT{ptname}\}~\verb+\Rightarrow+~\NT{term} \\[10ex]
-
-  \NT{meta} & ::= & & \mbox{\bf meta} \\
-    &     & \BLOB(\NT{term},\dots,\NT{term}) & \mbox{(term blob)} \\
-    &  |  & [\verb+term+]~x \\
-    &  |  & \verb+number+~x \\
-    &  |  & \verb+ident+~x \\
-    &  |  & \verb+fresh+~x \\
-    &  |  & \verb+anonymous+ \\
-    &  |  & \verb+fold+~[\verb+left+\mid\verb+right+]~\NT{meta}~\verb+rec+~x~\NT{meta} \\
-    &  |  & \verb+default+~\NT{meta}~\NT{meta} \\
-    &  |  & \verb+if+~\NT{meta}~\verb+then+~\NT{meta}~\verb+else+~\NT{meta} \\
-    &  |  & \verb+fail+ 
-\end{array}
-\]
-\hrule
-\end{table}
-
-\begin{table}
-\caption{\label{tab:wfl2} Well-formedness rules for level 2 patterns.\strut}
-\hrule
-\[
-\renewcommand{\arraystretch}{3.5}
-\begin{array}{@{}c@{}}
-  \inference[\sc Constr]
-    {P_i :: D_i}
-    {\BLOB[P_1,\dots,P_n] :: D_i \oplus \cdots \oplus D_j} \\
-  \inference[\sc TermVar]
-    {}
-    {\mathtt{term}~x :: x : \mathtt{Term}}
-  \quad
-  \inference[\sc NumVar]
-    {}
-    {\mathtt{number}~x :: x : \mathtt{Number}}
-  \\
-  \inference[\sc IdentVar]
-    {}
-    {\mathtt{ident}~x :: x : \mathtt{String}}
-  \quad
-  \inference[\sc FreshVar]
-    {}
-    {\mathtt{fresh}~x :: x : \mathtt{String}}
-  \\
-  \inference[\sc Success]
-    {}
-    {\mathtt{anonymous} :: \emptyset}
-  \\
-  \inference[\sc Fold]
-    {P_1 :: D_1 & P_2 :: D_2 \oplus (x : \mathtt{Term}) & \DOMAIN(D_2)\ne\emptyset & \DOMAIN(D_1)\cap\DOMAIN(D_2)=\emptyset}
-    {\mathtt{fold}~P_1~\mathtt{rec}~x~P_2 :: D_1 \oplus D_2~\mathtt{List}}
-  \\
-  \inference[\sc Default]
-    {P_1 :: D \oplus D_1 & P_2 :: D & \DOMAIN(D_1) \ne \emptyset & \DOMAIN(D) \cap \DOMAIN(D_1) = \emptyset}
-    {\mathtt{default}~P_1~P_2 :: D \oplus D_1~\mathtt{Option}}
-  \\
-  \inference[\sc If]
-    {P_1 :: \emptyset & P_2 :: D & P_3 :: D }
-    {\mathtt{if}~P_1~\mathtt{then}~P_2~\mathtt{else}~P_3 :: D}
-  \qquad
-  \inference[\sc Fail]
-    {}
-    {\mathtt{fail} :: \emptyset}
-%%     &  |  & \verb+if+~\NT{meta}~\verb+then+~\NT{meta}~\verb+else+~\NT{meta} \\
-%%     &  |  & \verb+fail+ 
-\end{array}
-\]
-\hrule
-\end{table}
-
-\begin{table}
- \caption{\label{tab:il2f1} Instantiation of level 2 patterns from level 1.
- \strut}
-\hrule
-\[
-\begin{array}{rcll}
-
-\IOT{C[t_1,\dots,t_n]}{\mathcal{E}} & =
-& C[\IOT{t_1}{\mathcal{E}},\dots,\IOT{t_n}{\mathcal{E}}] \\
-
-\IOT{\mathtt{term}~x}{\mathcal{E}} & = & t & \mathcal{E}(x) = \mathtt{Term}~t \\
-
-\IOT{\mathtt{number}~x}{\mathcal{E}} & =
-& n & \mathcal{E}(x) = \mathtt{Number}~n \\
-
-\IOT{\mathtt{ident}~x}{\mathcal{E}} & =
-& y & \mathcal{E}(x) = \mathtt{String}~y \\
-
-\IOT{\mathtt{fresh}~x}{\mathcal{E}} & = & y & \mathcal{E}(x) = \mathtt{String}~y \\
-
-\IOT{\mathtt{default}~P_1~P_2}{\mathcal{E}} & =
-& \IOT{P_1}{\UPDATE{\mathcal{E}}{x_i|->v_i}}
-& \mathcal{E}(x_i)=\mathtt{Some}~v_i \\
-& & & \NAMES(P_1)\setminus\NAMES(P_2)=\{x_1,\dots,x_n\} \\
-
-\IOT{\mathtt{default}~P_1~P_2}{\mathcal{E}} & =
-& \IOT{P_2}{\UPDATE{\mathcal{E}}{x_i|->\bot}}
-& \mathcal{E}(x_i)=\mathtt{None} \\
-& & & \NAMES(P_1)\setminus\NAMES(P_2)=\{x_1,\dots,x_n\} \\
-
-\IOT{\mathtt{fold}~\mathtt{right}~P_1~\mathtt{rec}~x~P_2}{\mathcal{E}}
-& =
-& \IOT{P_1}{\mathcal{E}'}
-& \mathcal{E}(\NAMES(P_2)\setminus\{x\}) = \{[],\dots,[]\} \\
-& & \multicolumn{2}{l}{\mathcal{E}'=\UPDATE{\mathcal{E}}{\NAMES(P_2)\setminus\{x\}|->\bot}}
-\\
-
-\IOT{\mathtt{fold}~\mathtt{right}~P_1~\mathtt{rec}~x~P_2}{\mathcal{E}}
-& =
-& \IOT{P_2}{\mathcal{E}'}
-& \mathcal{E}(y_i) = [v_{i1},\dots,v_{in}] \\
-& & & \NAMES(P_2)\setminus\{x\}=\{y_1,\dots,y_m\} \\
-& & \multicolumn{2}{l}{\mathcal{E}'(y) =
- \left\{
- \begin{array}{@{}ll}
- \IOT{\mathtt{fold}~\mathtt{right}~P_1~\mathtt{rec}~x~P_e}{\mathcal{E}''}
-               & y=x \\
- v_{i1}                & y=y_i \\
- \mathcal{E}(y) & \mbox{otherwise} \\
- \end{array}
- \right.} \\
-& & \multicolumn{2}{l}{\mathcal{E}''(y) =
- \left\{
- \begin{array}{@{}ll}
- [v_{i2};\dots;v_{in}] & y=y_i \\
- \mathcal{E}(y)        & \mbox{otherwise} \\
- \end{array}
- \right.} \\
-
-\IOT{\mathtt{fold}~\mathtt{left}~P_1~\mathtt{rec}~x~P_2}{\mathcal{E}}
-& =
-& \mathit{eval\_fold}(x,P_2,\mathcal{E}')
-& \\
-& & \multicolumn{2}{l}{\mathcal{E}' = \UPDATE{\mathcal{E}}{x|->
-\IOT{P_1}{\UPDATE{\mathcal{E}}{\NAMES(P_2)|->\bot}}}} \\
-
-\mathit{eval\_fold}(x,P,\mathcal{E})
-& =
-& \mathcal{E}(x)
-& \mathcal{E}(\NAMES(P)\setminus\{x\})=\{[],\dots,[]\} \\
-
-\mathit{eval\_fold}(x,P,\mathcal{E})
-& =
-& \mathit{eval\_fold}(x,P,\mathcal{E}')
-& \mathcal{E}(y_i) = [v_{i1},\dots,v_{in}] \\
-& & & \NAMES(P)\setminus{x}=\{y_1,\dots,y_m\} \\
-&
-& \multicolumn{2}{l}{\mathcal{E}' = \UPDATE{\mathcal{E}}{x|->\IOT{P}{\mathcal{E}''}; ~ y_i |-> [v_{i2};\dots;v_{in_i}]}}
-\\
-&
-& \multicolumn{2}{l}{\mathcal{E}''(y) =
-\left\{
-\begin{array}{ll}
- v_1           & y\in \NAMES(P)\setminus\{x\} \\
- \mathcal{E}(x) & y=x \\
- \bot          & \mathit{otherwise} \\
-\end{array}
-\right.
-}
-\\
-
-\end{array} \\
-\]
-\end{table}
-
-\begin{table}
-\caption{\label{tab:l2match} Pattern matching of level 2 terms.\strut}
-\hrule
-\[
-\renewcommand{\arraystretch}{3.5}
-\begin{array}{@{}c@{}}
-  \inference[\sc Constr]
-    {t_i \in P_i ~> \mathcal E_i & i\ne j => \DOMAIN(\mathcal E_i)\cap\DOMAIN(\mathcal E_j)=\emptyset}
-    {C[t_1,\dots,t_n] \in C[P_1,\dots,P_n] ~> \mathcal E_1 \oplus \cdots \oplus \mathcal E_n}
-  \\
-  \inference[\sc TermVar]
-    {}
-    {t \in [\mathtt{term}]~x ~> [x |-> \mathtt{Term}~t]}
-  \quad
-  \inference[\sc NumVar]
-    {}
-    {n \in \mathtt{number}~x ~> [x |-> \mathtt{Number}~n]}
-  \\
-  \inference[\sc IdentVar]
-    {}
-    {x \in \mathtt{ident}~x ~> [x |-> \mathtt{String}~x]}
-  \quad
-  \inference[\sc FreshVar]
-    {}
-    {x \in \mathtt{fresh}~x ~> [x |-> \mathtt{String}~x]}
-  \\
-  \inference[\sc Success]
-    {}
-    {t \in \mathtt{anonymous} ~> \emptyset}
-  \\
-  \inference[\sc DefaultT]
-    {t \in P_1 ~> \mathcal E}
-    {t \in \mathtt{default}~P_1~P_2 ~> \mathcal E'}
-    \quad
-    \mathcal E'(x) = \left\{
-    \renewcommand{\arraystretch}{1}
-    \begin{array}{ll}
-      \mathtt{Some}~\mathcal{E}(x) & x \in \NAMES(P_1) \setminus \NAMES(P_2) \\
-      \mathcal{E}(x) & \mbox{otherwise}
-    \end{array}
-    \right.
-  \\
-  \inference[\sc DefaultF]
-    {t \not\in P_1 & t \in P_2 ~> \mathcal E}
-    {t \in \mathtt{default}~P_1~P_2 ~> \mathcal E'}
-    \quad
-    \mathcal E'(x) = \left\{
-    \renewcommand{\arraystretch}{1}
-    \begin{array}{ll}
-      \mathtt{None} & x \in \NAMES(P_1) \setminus \NAMES(P_2) \\
-      \mathcal{E}(x) & \mbox{otherwise}
-    \end{array}
-    \right.
-  \\
-  \inference[\sc IfT]
-    {t \in P_1 ~> \mathcal E' & t \in P_2 ~> \mathcal E}
-    {t \in \mathtt{if}~P_1~\mathtt{then}~P_2~\mathtt{else}~P_3 ~> \mathcal E}
-  \quad
-  \inference[\sc IfF]
-    {t \not\in P_1 & t \in P_3 ~> \mathcal E}
-    {t \in \mathtt{if}~P_1~\mathtt{then}~P_2~\mathtt{else}~P_3 ~> \mathcal E}
-  \\
-  \inference[\sc FoldRec]
-    {t \in P_2 ~> \mathcal E & \mathcal{E}(x) \in \mathtt{fold}~d~P_1~\mathtt{rec}~x~P_2 ~> \mathcal E'}
-    {t \in \mathtt{fold}~d~P_1~\mathtt{rec}~x~P_2 ~> \mathcal E''}
-  \\
-  \mbox{where}~\mathcal{E}''(y) = \left\{
-    \renewcommand{\arraystretch}{1}
-    \begin{array}{ll}
-      \mathcal{E}(y)::\mathcal{E}'(y) & y \in \NAMES(P_2) \setminus \{x\} \wedge d = \mathtt{right} \\
-      \mathcal{E}'(y)@[\mathcal{E}(y)] & y \in \NAMES(P_2) \setminus \{x\} \wedge d = \mathtt{left} \\
-      \mathcal{E}'(y) & \mbox{otherwise}
-    \end{array}  
-  \right.
-  \\
-  \inference[\sc FoldBase]
-    {t \not\in P_2 & t \in P_1 ~> \mathcal E}
-    {t \in \mathtt{fold}~P_1~\mathtt{rec}~x~P_2 ~> \mathcal E'}
-  \quad
-  \mathcal E'(y) = \left\{
-    \renewcommand{\arraystretch}{1}
-    \begin{array}{ll}
-      [] & y \in \NAMES(P_2) \setminus \{x\} \\
-      \mathcal{E}(y) & \mbox{otherwise}
-    \end{array}  
-  \right.
-\end{array}
-\]
-\hrule
-\end{table}
-
-\begin{table}
- \caption{\label{tab:synl3} Abstract syntax of level 3 terms and patterns.}
- \hrule
- \[
- \begin{array}{@{}ll@{}}
-  \begin{array}[t]{rcll}
-   T & : := &   & \mbox{(\bf terms)} \\
-     &      & u & \mbox{(uri)} \\
-     &  |   & \lambda x.T & \mbox{($\lambda$-abstraction)} \\
-     &  |   & (T_1 \dots T_n) & \mbox{(application)} \\
-     &  |   & \dots \\[2ex]
-  \end{array} &
-  \begin{array}[t]{rcll}
-   P & : := &   & \mbox{(\bf patterns)} \\
-     &      & u & \mbox{(uri)} \\
-     &  |   & V & \mbox{(variable)} \\
-     &  |   & (P_1 \dots P_n) & \mbox{(application)} \\[2ex]
-   V & : := &   & \mbox{(\bf variables)} \\
-     &      & \TVAR{x} & \mbox{(term variable)} \\
-     &  |   & \IMPVAR & \mbox{(implicit variable)} \\
-  \end{array} \\
- \end{array}
- \]
- \hrule
-\end{table}
-
-\begin{table}
-\caption{\label{tab:wfl3} Well-formedness rules for level 3 patterns.\strut}
-\hrule
-\[
-\renewcommand{\arraystretch}{3.5}
-\begin{array}{@{}c@{}}
- \inference[\sc Uri] {} {u :: \emptyset} \quad
- \inference[\sc ImpVar] {} {\TVAR{x} :: \emptyset} \quad
- \inference[\sc TermVar] {} {\TVAR{x} :: x:\mathtt{Term}} \\
- \inference[\sc Appl]
-  {P_i :: D_i
-   \quad \forall i,j,i\neq j=>\DOMAIN(D_i)\cap\DOMAIN(D_j)=\emptyset}
-  {P_1\cdots P_n :: D_1\oplus\cdots\oplus D_n} \\
-\end{array}
-\]
-\hrule
-\end{table}
-
-\begin{table}
- \caption{\label{tab:synargp} Abstract syntax of applicative symbol patterns.}
- \hrule
- \[
- \begin{array}{rcll}
-  P & : := &           & \mbox{(\bf patterns)} \\
-    &      & s ~ \{ \mathit{arg} \} & \mbox{(symbol pattern)} \\[2ex]
-  \mathit{arg} & : := & & \mbox{(\bf argument)} \\
-    &      & \TVAR{x} & \mbox{(term variable)} \\
-    &  |   & \eta.\mathit{arg} & \mbox{($\eta$-abstraction)} \\
- \end{array}
- \]
- \hrule
-\end{table}
-
-\begin{table}
-\caption{\label{tab:wfargp} Well-formedness rules for applicative symbol
-patterns.\strut}
-\hrule
-\[
-\renewcommand{\arraystretch}{3.5}
-\begin{array}{@{}c@{}}
- \inference[\sc Pattern]
-  {\mathit{arg}_i :: D_i
-   \quad \forall i,j,i\neq j=>\DOMAIN(D_i)\cap\DOMAIN(D_j)=\emptyset}
-  {s~\mathit{arg}_1\cdots\mathit{arg}_n :: D_1\oplus\cdots\oplus D_n} \\
- \inference[\sc TermVar]
-  {}
-  {\TVAR{x} :: x : \mathtt{Term}}
- \quad
- \inference[\sc EtaAbs]
-  {\mathit{arg} :: D}
-  {\eta.\mathit{arg} :: D}
- \\
-\end{array}
-\]
-\hrule
-\end{table}
-
-\begin{table}
-\caption{\label{tab:l3match} Pattern matching of level 3 terms.\strut}
-\hrule
-\[
-\renewcommand{\arraystretch}{3.5}
-\begin{array}{@{}c@{}}
- \inference[\sc Uri] {} {u\in u ~> []} \quad
- \inference[\sc Appl] {t_i\in P_i ~> \mathcal{E}_i}
-  {(t_1\dots t_n)\in(P_1\dots P_n) ~>
-   \mathcal{E}_1\oplus\cdots\oplus\mathcal{E}_n} \\
- \inference[\sc TermVar] {} {t\in \TVAR{x} ~> [x |-> \mathtt{Term}~t]} \quad
- \inference[\sc ImpVar] {} {t\in \IMPVAR ~> []} \\
-\end{array}
-\]
-\hrule
-\end{table}
-
-\begin{table}
-\caption{\label{tab:iapf3} Instantiation of applicative symbol patterns (from
-level 3).\strut}
-\hrule
-\[
-\begin{array}{rcll}
- \IAP{s~a_1\cdots a_n}{\mathcal{E}} & = &
-  (s~\IAPP{a_1}{\mathcal{E}}{0}\cdots\IAPP{a_n}{\mathcal{E}}{0}) & \\
- \IAPP{\TVAR{x}}{\mathcal{E}}{0} & = & t & \mathcal{E}(x)=\mathtt{Term}~t \\
- \IAPP{\TVAR{x}}{\mathcal{E}}{i+1} & = & \lambda y.\IAPP{t}{\mathcal{E}}{i}
-  & \mathcal{E}(x)=\mathtt{Term}~\lambda y.t \\
- \IAPP{\TVAR{x}}{\mathcal{E}}{i+1} & =
-  & \lambda y_1.\cdots.\lambda y_{i+1}.t~y_1\cdots y_{i+1}
-  & \mathcal{E}(x)=\mathtt{Term}~t\wedge\forall y,t\neq\lambda y.t \\
- \IAPP{\eta.a}{\mathcal{E}}{i} & = & \IAPP{a}{\mathcal{E}}{i+1} \\
-\end{array}
-\]
-\hrule
-\end{table}
-
-\section{Type checking}
-
-\subsection{Level 1 $<->$ Level 2}
-
-\newcommand{\GUARDED}{\mathit{guarded}}
-\newcommand{\TRUE}{\mathit{true}}
-\newcommand{\FALSE}{\mathit{false}}
-
-\newcommand{\TN}{\mathit{tn}}
-
-\begin{table}
-\caption{\label{tab:guarded} Guarded condition of level 2
-pattern. Note that the recursive case of the \texttt{fold} magic is
-not explicitly required to be guarded. The point is that it must
-contain at least two distinct names, and this guarantees that whatever
-is matched by the recursive pattern, the terms matched by those two
-names will be smaller than the whole matched term.\strut} \hrule
-\[
-\begin{array}{rcll}
-  \GUARDED(C(M(P))) & = & \GUARDED(P) \\
-  \GUARDED(C(t_1,\dots,t_n)) & = & \TRUE \\
-  \GUARDED(\mathtt{term}~x) & = & \FALSE \\
-  \GUARDED(\mathtt{number}~x) & = & \FALSE \\
-  \GUARDED(\mathtt{ident}~x) & = & \FALSE \\
-  \GUARDED(\mathtt{fresh}~x) & = & \FALSE \\
-  \GUARDED(\mathtt{anonymous}) & = & \TRUE \\
-  \GUARDED(\mathtt{default}~P_1~P_2) & = & \GUARDED(P_1) \wedge \GUARDED(P_2) \\
-  \GUARDED(\mathtt{if}~P_1~\mathtt{then}~P_2~\mathtt{else}~P_3) & = & \GUARDED(P_2) \wedge \GUARDED(P_3) \\
-  \GUARDED(\mathtt{fail}) & = & \TRUE \\
-  \GUARDED(\mathtt{fold}~d~P_1~\mathtt{rec}~x~P_2) & = & \GUARDED(P_1)
-\end{array}
-\]
-\hrule
-\end{table}
-
-%% Assume that we have two corresponding patterns $P_1$ (level 1) and
-%% $P_2$ (level 2) and that we have to check whether they are
-%% ``correct''. First we define the notion of \emph{top-level names} of
-%% $P_1$ and $P_2$, as follows:
-%% \[
-%% \begin{array}{rcl}
-%%   \TN(C_1[P'_1,\dots,P'_2]) & = & \TN(P'_1) \cup \cdots \cup \TN(P'_2) \\
-%%   \TN(\TVAR{x}) & = & \{x\} \\
-%%   \TN(\NVAR{x}) & = & \{x\} \\
-%%   \TN(\IVAR{x}) & = & \{x\} \\
-%%   \TN(\mathtt{list0}~P'~l?) & = & \emptyset \\
-%%   \TN(\mathtt{list1}~P'~l?) & = & \emptyset \\
-%%   \TN(\mathtt{opt}~P') & = & \emptyset \\[3ex]
-%%   \TN(\BLOB(P''_1,\dots,P''_2)) & = & \TN(P''_1) \cup \cdots \cup \TN(P''_2) \\
-%%   \TN(\mathtt{term}~x) & = & \{x\} \\
-%%   \TN(\mathtt{number}~x) & = & \{x\} \\
-%%   \TN(\mathtt{ident}~x) & = & \{x\} \\
-%%   \TN(\mathtt{fresh}~x) & = & \{x\} \\
-%%   \TN(\mathtt{anonymous}) & = & \emptyset \\
-%%   \TN(\mathtt{fold}~P''_1~\mathtt{rec}~x~P''_2) & = & \TN(P''_1) \\
-%%   \TN(\mathtt{default}~P''_1~P''_2) & = & \TN(P''_1) \cap \TN(P''_2) \\
-%%   \TN(\mathtt{if}~P''_1~\mathtt{then}~P''_2~\mathtt{else}~P''_3) & = & \TN(P''_2) \\
-%%   \TN(\mathtt{fail}) & = & \emptyset
-%% \end{array}
-%% \]
-
-We say that a \emph{bidirectional transformation}
-\[
-  P_1 <=> P_2
-\]
-is well-formed if:
-\begin{itemize}
-  \item $P_1$ is a well-formed \emph{level 1 pattern} in some context $D$ and
-  $P_2$ is a well-formed \emph{level 2 pattern} in the very same context $D$,
-  that is $P_1 :: D$ and $P_2 :: D$;
-  \item the pattern $P_2$ is guarded, that is $\GUARDED(P_2)=\TRUE$;
-  \item for any direct sub-pattern $\mathtt{opt}~P'_1$ of $P_1$ such
-    that $\mathtt{opt}~P'_1 :: X$ there is a sub-pattern
-    $\mathtt{default}~P'_2~P''_2$ of $P_2$ such that
-    $\mathtt{default}~P'_2~P''_2 :: X \oplus Y$ for some context $Y$;
-  \item for any direct sub-pattern $\mathtt{list}~P'_1~l?$ of $P_1$
-    such that $\mathtt{list}~P'_1~l? :: X$ there is a sub-pattern
-    $\mathtt{fold}~P'_2~\mathtt{rec}~x~P''_2$ of $P_2$ such that
-    $\mathtt{fold}~P'_2~\mathtt{rec}~x~P''_2 :: X \oplus Y$ for some
-    context $Y$.
-\end{itemize}
-
-A \emph{left-to-right transformation}
-\[
-  P_1 => P_2
-\]
-is well-formed if $P_2$ does not contain \texttt{if}, \texttt{fail},
-or \texttt{anonymous} meta patterns.
-
-Note that the transformations are in a sense asymmetric. Moving from
-the concrete syntax (level 1) to the abstract syntax (level 2) we
-forget about syntactic details. Moving from the abstract syntax to the
-concrete syntax we may want to forget about redundant structure
-(types).
-
-Relationship with grammatical frameworks?
-
-\subsection{Level 2 $<->$ Level 3}
-
-We say that an \emph{interpretation}
-\[
- P_2 <=> P_3
-\]
-is well-formed if:
-\begin{itemize}
- \item $P_2$ is a well-formed \emph{applicative symbol pattern} in some context
-  $D$ and $P_3$ is a well-formed \emph{level 3 pattern} in the very same
-  context $D$, that is $P_2 :: D$ and $P_3 :: D$.
-\end{itemize}
+  \input{body}
 
 \end{document}