[2:apply eq_sym] assumption;
qed.
-lemma eq_opp: ∀G:abelian_group.∀x,y:G. x ≈ y → -x ≈ -y.
+lemma feq_opp: ∀G:abelian_group.∀x,y:G. x ≈ y → -x ≈ -y.
intros (G x y H); apply (feq_oppl ??y ? H); apply eq_reflexive;
qed.
-coercion cic:/matita/groups/eq_opp.con nocomposites.
+coercion cic:/matita/groups/feq_opp.con nocomposites.
lemma eq_opp_sym: ∀G:abelian_group.∀x,y:G. y ≈ x → -x ≈ -y.
-compose eq_opp with eq_sym (H); apply H; assumption;
+compose feq_opp with eq_sym (H); apply H; assumption;
qed.
coercion cic:/matita/groups/eq_opp_sym.con nocomposites.
lemma eq_opp_plusr: ∀G:abelian_group.∀x,y,z:G. x ≈ y → -(x + z) ≈ -(y + z).
-compose feq_plusr with eq_opp(H); apply H; assumption;
+compose feq_plusr with feq_opp(H); apply H; assumption;
qed.
coercion cic:/matita/groups/eq_opp_plusr.con nocomposites.
lemma eq_opp_plusl: ∀G:abelian_group.∀x,y,z:G. x ≈ y → -(z + x) ≈ -(z + y).
-compose feq_plusl with eq_opp(H); apply H; assumption;
+compose feq_plusl with feq_opp(H); apply H; assumption;
qed.
coercion cic:/matita/groups/eq_opp_plusl.con nocomposites.
coercion cic:/matita/ordered_groups/og_abelian_group.con.
-(* CSC: NO! Cosi' e' nel frammento negativo. Devi scriverlo con l'eccedenza!
- Tutto il resto del file e' da rigirare nel frammento positivo.
-*)
record ogroup : Type ≝ {
og_carr:> pre_ogroup;
exc_canc_plusr: ∀f,g,h:og_carr. f+h ≰ g+h → f ≰ g
}.
+notation > "'Ex'≪" non associative with precedence 50 for
+ @{'excedencerewritel}.
+
+interpretation "exc_rewl" 'excedencerewritel =
+ (cic:/matita/excedence/exc_rewl.con _ _ _).
+
+notation > "'Ex'≫" non associative with precedence 50 for
+ @{'excedencerewriter}.
+
+interpretation "exc_rewr" 'excedencerewriter =
+ (cic:/matita/excedence/exc_rewr.con _ _ _).
+
lemma fexc_plusr:
∀G:ogroup.∀x,y,z:G. x ≰ y → x+z ≰ y + z.
intros 5 (G x y z L); apply (exc_canc_plusr ??? (-z));
-apply (exc_rewl ??? (x + (z + -z)) (plus_assoc ????));
-apply (exc_rewl ??? (x + (-z + z)) (plus_comm ??z));
-apply (exc_rewl ??? (x+0) (opp_inverse ??));
-apply (exc_rewl ??? (0+x) (plus_comm ???));
-apply (exc_rewl ??? x (zero_neutral ??));
-apply (exc_rewr ??? (y + (z + -z)) (plus_assoc ????));
-apply (exc_rewr ??? (y + (-z + z)) (plus_comm ??z));
-apply (exc_rewr ??? (y+0) (opp_inverse ??));
-apply (exc_rewr ??? (0+y) (plus_comm ???));
-apply (exc_rewr ??? y (zero_neutral ??) L);
+apply (Ex≪ (x + (z + -z)) (plus_assoc ????));
+apply (Ex≪ (x + (-z + z)) (plus_comm ??z));
+apply (Ex≪ (x+0) (opp_inverse ??));
+apply (Ex≪ (0+x) (plus_comm ???));
+apply (Ex≪ x (zero_neutral ??));
+apply (Ex≫ (y + (z + -z)) (plus_assoc ????));
+apply (Ex≫ (y + (-z + z)) (plus_comm ??z));
+apply (Ex≫ (y+0) (opp_inverse ??));
+apply (Ex≫ (0+y) (plus_comm ???));
+apply (Ex≫ y (zero_neutral ??) L);
qed.
coercion cic:/matita/ordered_groups/fexc_plusr.con nocomposites.
meet_assoc: ∀x,y,z. value (meet x (meet y z)) ≈ value (meet (meet x y) z);
meet_wins1: ∀x,y. value (join x (meet x y)) ≈ value x;
meet_wins2: ∀x,y. value (meet x (join x y)) ≈ value x;
- meet_join_plus: ∀x,y. value (join x y) + value (meet x y) ≈ value x + value y;
+ modular_mjp: ∀x,y. value (join x y) + value (meet x y) ≈ value x + value y;
join_meet_le: ∀x,y,z. value (join x (meet y z)) ≤ value (join x y);
meet_join_le: ∀x,y,z. value (meet x (join y z)) ≤ value (meet x y)
}.
notation "\mu" non associative with precedence 80 for @{ 'value }.
interpretation "lattice value" 'value = (cic:/matita/valued_lattice/value.con _ _).
-lemma foo: ∀R.∀L:vlattice R.∀x,y,z:L.
+lemma feq_joinr: ∀R.∀L:vlattice R.∀x,y,z:L.
+ μ x ≈ μ y → μ (z ∧ x) ≈ μ (z ∧ y) → μ (z ∨ x) ≈ μ (z ∨ y).
+intros (R L x y z H H1);
+apply (plus_cancr ??? (μ(z∧x)));
+apply (eq_trans ?? (μz + μx) ? (modular_mjp ????));
+apply (eq_trans ?? (μz + μy) ? H); clear H;
+apply (eq_trans ?? (μ(z∨y) + μ(z∧y))); [1: apply eq_sym; apply modular_mjp]
+apply (plus_cancl ??? (- μ (z ∨ y)));
+apply (eq_trans ?? ? ? (plus_assoc ????));
+apply (eq_trans ?? (0+ μ(z∧y)) ? (opp_inverse ??));
+apply (eq_trans ?? ? ? (zero_neutral ??));
+apply (eq_trans ?? (- μ(z∨y)+ μ(z∨y)+ μ(z∧x)) ?? (plus_assoc ????));
+apply (eq_trans ?? (0+ μ(z∧x)) ?? (opp_inverse ??));
+apply (eq_trans ?? (μ (z ∧ x)) ?H1 (zero_neutral ??));
+qed.
+
+lemma step1_3_57: ∀R.∀L:vlattice R.∀x,y,z:L.
μ(x ∧ (y ∨ z)) ≈ (μ x) + (μ y) + μ z + -μ (y ∧ z) + -μ (z ∨ (x ∨ y)).
intros (R L x y z);
-lapply (meet_join_plus ? ? x (y ∨ z)) as H;
-lapply (meet_join_plus ? ? y z) as H1;
- (*CSC: A questo punto ti servono dei lemmi sui gruppi che non sono ancora
- stati dimostrati. E una valanga di passi di riscrittura :-)
- *)
-
+cut (μ(x∧(y∨z))≈(μx + μ(y ∨ z) + - μ(x∨(y∨z)))); [2:
+ lapply (modular_mjp ?? x (y ∨ z)) as H1;
+ apply (eq_trans ?? (μ(x∨(y∨z))+ μ(x∧(y∨z)) +-μ(x∨(y∨z))) ?? H1); clear H1;
+ apply (eq_trans ?? ? ?? (plus_comm ???));
+ (* apply (eq_trans ?? (0+μ(x∧(y∧z))) ?? (opp_inverse ??)); ASSERT FALSE *)
+ apply (eq_trans ?? (- μ(x∨(y∨z))+ μ(x∨(y∨z))+ μ(x∧(y∨z)))); [2: apply eq_sym; apply plus_assoc;]
+ apply (eq_trans ?? (0+μ(x∧(y∨z)))); [2: apply feq_plusr; apply eq_sym; apply opp_inverse;]
+ (* apply (eq_trans ?? ? ? (eq_refl ??) (zero_neutral ??)); ASSERT FALSE *)
+ apply (eq_trans ?? (μ(x∧(y∨z)))); [apply eq_reflexive| apply eq_sym; apply zero_neutral]]
+apply (eq_trans ?? ? ? Hcut); clear Hcut;
+cut ( μ(y∨z) ≈ μy + μz + -μ (y ∧ z)); [2:
+ lapply (modular_mjp ?? y z) as H1;
+ apply (plus_cancr ??? (μ(y ∧ z)));
+ apply (eq_trans ?? ? ? H1); clear H1;
+ apply (eq_trans ?? ? ?? (plus_assoc ????));
+ apply (eq_trans ?? (μy+ μz + 0)); [2: apply feq_plusl; apply eq_sym; apply opp_inverse]
+ apply (eq_trans ?? ? ?? (plus_comm ???));
+ apply (eq_trans ?? (μy + μz) ?? (eq_sym ??? (zero_neutral ??)));
+ apply eq_reflexive;]
+apply (eq_trans ?? ( μx+ (μy+ μz+- μ(y∧z)) +- μ(x∨(y∨z))) ?); [
+ apply feq_plusr; apply feq_plusl; apply Hcut] clear Hcut;
+apply (eq_trans ?? (μx+ μy+ μz+- μ(y∧z)+- μ(x∨(y∨z)))); [2:
+ apply feq_plusl; apply feq_opp;
+ apply (eq_trans ?? ? ? (join_assoc ?????));
+ apply (eq_trans ?? ? ? (join_comm ????));
+ apply eq_reflexive;]
+apply feq_plusr; apply (eq_trans ?? ? ? (plus_assoc ????));
+apply feq_plusr; apply plus_assoc;
+qed.
lemma meet_join_le1: ∀R.∀L:vlattice R.∀x,y,z:L.μ (x ∧ z) ≤ μ (x ∧ (y ∨ z)).
intros (R L x y z);
+apply (le_rewr ??? ? (step1_3_57 ?????));
apply (le_rewr ??? (μ x + μ y + μ z + -μ (y ∧ z) + -μ(z ∨ (x ∨ y))) (foo ?????));
apply (le_rewr ??? (μ x + μ y + μ z + -μ (y ∧ z) + -μ((z ∨ x) ∨ y)));
[ apply feq_plusl; apply eq_opp_sym; apply join_assoc;]