Source scripts.
<list><item>
<notice class="gamma" text="2020-02-27."/>
- released [Git revision: 2014-10-28 17:46:26].
+ released [Git revision: 2020-02-27 22:45:50].
</item></list>
</body>
<body>
(* Advanced properties ******************************************************)
-(* Note: apparently this was missing in basic_1 *)
lemma cprs_delta: ∀G,L,K,V,V2,i.
⬇[i] L ≡ K.ⓓV → ⦃G, K⦄ ⊢ V ➡* V2 →
∀W2. ⬆[0, i + 1] V2 ≡ W2 → ⦃G, L⦄ ⊢ #i ➡* W2.
(* Basic properties *********************************************************)
-(* Basic_1: was: flt_shift *)
lemma rfw_shift: ∀a,I,K,V,T. ♯{K.ⓑ{I}V, T} < ♯{K, ⓑ{a,I}V.T}.
normalize //
qed.
lemma rfw_lpair_dx: ∀I,L,V,T. ♯{L, T} < ♯{L.ⓑ{I}V, T}.
normalize /3 width=1 by monotonic_lt_plus_l, monotonic_le_plus_r/
qed.
-
-(* Basic_1: removed theorems 7:
- flt_thead_sx flt_thead_dx flt_trans
- flt_arith0 flt_arith1 flt_arith2 flt_wf_ind
-*)
-(* Basic_1: removed local theorems 1: q_ind *)
(* Basic properties *********************************************************)
-(* Basic_1: was: flt_shift *)
lemma fw_shift: ∀a,I,G,K,V,T. ♯{G, K.ⓑ{I}V, T} < ♯{G, K, ⓑ{a,I}V.T}.
normalize //
qed.
lemma fw_lpair_sn: ∀I,G,L,V,T. ♯{G, L, V} < ♯{G, L.ⓑ{I}V, T}.
normalize /3 width=1 by monotonic_lt_plus_l, monotonic_le_plus_r/
qed.
-
-(* Basic_1: removed theorems 7:
- flt_thead_sx flt_thead_dx flt_trans
- flt_arith0 flt_arith1 flt_arith2 flt_wf_ind
-*)
-(* Basic_1: removed local theorems 1: q_ind *)
#Hni12 @or_intror #H destruct /2 width=1 by/
qed-.
-(* Basic_1: was: bind_dec *)
lemma eq_bind2_dec: ∀I1,I2:bind2. Decidable (I1 = I2).
* * /2 width=1 by or_introl/
@or_intror #H destruct
qed-.
-(* Basic_1: was: flat_dec *)
lemma eq_flat2_dec: ∀I1,I2:flat2. Decidable (I1 = I2).
* * /2 width=1 by or_introl/
@or_intror #H destruct
qed-.
-(* Basic_1: was: kind_dec *)
lemma eq_item2_dec: ∀I1,I2:item2. Decidable (I1 = I2).
* [ #a1 ] #I1 * [1,3: #a2 ] #I2
[2,3: @or_intror #H destruct
@or_intror #H destruct /2 width=1 by/
]
qed-.
-
-(* Basic_1: removed theorems 21:
- s_S s_plus s_plus_sym s_minus minus_s_s s_le s_lt s_inj s_inc
- s_arith0 s_arith1
- r_S r_plus r_plus_sym r_minus r_dis s_r r_arith0 r_arith1
- not_abbr_abst bind_dec_not
-*)
#I #L #V >append_length //
qed.
-(* Basic_1: was just: chead_ctail *)
lemma lpair_ltail: ∀L,I,V. ∃∃J,K,W. L.ⓑ{I}V = ⓑ{J}W.K & |L| = |K|.
#L elim L -L /2 width=5 by ex2_3_intro/
#L #Z #X #IHL #I #V elim (IHL Z X) -IHL
(* Basic eliminators ********************************************************)
-(* Basic_1: was: c_tail_ind *)
lemma lenv_ind_alt: ∀R:predicate lenv.
R (⋆) → (∀I,L,T. R L → R (ⓑ{I}T.L)) →
∀L. R L.
lemma lw_pair: ∀I,L,V. ♯{L} < ♯{L.ⓑ{I}V}.
/3 width=1 by lt_plus_to_minus_r, monotonic_lt_plus_r/ qed.
-
-(* Basic_1: removed theorems 4: clt_cong clt_head clt_thead clt_wf_ind *)
-(* Basic_1: removed local theorems 1: clt_wf__q_ind *)
-(* Basic_1: note: clt_thead should be renamed clt_ctail *)
(* Basic properties *********************************************************)
-(* Basic_1: was: term_dec *)
lemma eq_term_dec: ∀T1,T2:term. Decidable (T1 = T2).
#T1 elim T1 -T1 #I1 [| #V1 #T1 #IHV1 #IHT1 ] * #I2 [2,4: #V2 #T2 ]
[1,4: @or_intror #H destruct
]
qed-.
-(* Basic_1: was: thead_x_y_y *)
lemma discr_tpair_xy_y: ∀I,V,T. ②{I} V. T = T → ⊥.
#I #V #T elim T -T
[ #J #H destruct
elim (eq_term_dec T1 T2) /3 width=1 by or_introl/ #HT12 destruct
@or_intror @conj // #HT12 destruct /2 width=1 by/
qed-.
-
-(* Basic_1: removed theorems 3:
- not_void_abst not_abbr_void not_abst_void
-*)
(* Basic properties *********************************************************)
-(* Basic_1: was: tweight_lt *)
lemma tw_pos: ∀T. 1 ≤ ♯{T}.
#T elim T -T //
qed.
-
-(* Basic_1: removed theorems 11:
- wadd_le wadd_lt wadd_O weight_le weight_eq weight_add_O
- weight_add_S tlt_trans tlt_head_sx tlt_head_dx tlt_wf_ind
-*)
-(* Basic_1: removed local theorems 1: q_ind *)
#J #V1 #V2 #T1 #T2 #I #H destruct
qed-.
-(* Basic_1: was: iso_gen_sort iso_gen_lref *)
lemma tsts_inv_atom1: ∀I,T2. ⓪{I} ≂ T2 → T2 = ⓪{I}.
/2 width=3 by tsts_inv_atom1_aux/ qed-.
]
qed-.
-(* Basic_1: was: iso_gen_head *)
lemma tsts_inv_pair1: ∀I,W1,U1,T2. ②{I}W1.U1 ≂ T2 →
∃∃W2,U2. T2 = ②{I}W2. U2.
/2 width=5 by tsts_inv_pair1_aux/ qed-.
(* Basic properties *********************************************************)
-(* Basic_1: was: iso_refl *)
lemma tsts_refl: reflexive … tsts.
#T elim T -T //
qed.
(* Main properties **********************************************************)
-(* Basic_1: was: iso_trans *)
theorem tsts_trans: Transitive … tsts.
#T1 #T * -T1 -T //
#I #V1 #V #T1 #T #X #H
(* Advanced inversion lemmas ************************************************)
-(* Basic_1: was only: iso_flats_lref_bind_false iso_flats_flat_bind_false *)
lemma tsts_inv_bind_applv_simple: ∀a,I,Vs,V2,T1,T2. ⒶVs.T1 ≂ ⓑ{a,I} V2. T2 →
𝐒⦃T1⦄ → ⊥.
#a #I #Vs #V2 #T1 #T2 #H
#L1 #L #L2 #l #m #cs #_ #_ #H destruct
qed-.
-(* Basic_1: was: drop1_gen_pnil *)
lemma drops_inv_nil: ∀L1,L2,s. ⬇*[s, ◊] L1 ≡ L2 → L1 = L2.
/2 width=4 by drops_inv_nil_aux/ qed-.
]
qed-.
-(* Basic_1: was: drop1_gen_pcons *)
lemma drops_inv_cons: ∀L1,L2,s,l,m,cs. ⬇*[s, ❨l, m❩; cs] L1 ≡ L2 →
∃∃L. ⬇*[s, cs] L1 ≡ L & ⬇[s, l, m] L ≡ L2.
/2 width=3 by drops_inv_cons_aux/ qed-.
(* Basic properties *********************************************************)
-(* Basic_1: was: drop1_skip_bind *)
lemma drops_skip: ∀L1,L2,s,cs. ⬇*[s, cs] L1 ≡ L2 → ∀V1,V2. ⬆*[cs] V2 ≡ V1 →
∀I. ⬇*[s, cs + 1] L1.ⓑ{I}V1 ≡ L2.ⓑ{I}V2.
#L1 #L2 #s #cs #H elim H -L1 -L2 -cs
#R #s #HR #L #K #cs #HLK #Ts #Us #H elim H -Ts -Us normalize //
#Ts #Us #T #U #HTU #_ #IHTUs * /3 width=7 by conj/
qed.
-
-(* Basic_1: removed theorems 1: drop1_getl_trans *)
(* Main properties **********************************************************)
-(* Basic_1: was: drop1_trans *)
theorem drops_trans: ∀L,L2,s,cs2. ⬇*[s, cs2] L ≡ L2 → ∀L1,cs1. ⬇*[s, cs1] L1 ≡ L →
⬇*[s, cs2 @@ cs1] L1 ≡ L2.
#L #L2 #s #cs2 #H elim H -L -L2 -cs2 /3 width=3 by drops_cons/
∃∃T. ⬆[l, m] T1 ≡ T & ⬆*[cs] T ≡ T2.
/2 width=3 by lifts_inv_cons_aux/ qed-.
-(* Basic_1: was: lift1_sort *)
lemma lifts_inv_sort1: ∀T2,k,cs. ⬆*[cs] ⋆k ≡ T2 → T2 = ⋆k.
#T2 #k #cs elim cs -cs
[ #H <(lifts_inv_nil … H) -H //
]
qed-.
-(* Basic_1: was: lift1_lref *)
lemma lifts_inv_lref1: ∀T2,cs,i1. ⬆*[cs] #i1 ≡ T2 →
∃∃i2. @❪i1, cs❫ ≘ i2 & T2 = #i2.
#T2 #cs elim cs -cs
]
qed-.
-(* Basic_1: was: lift1_bind *)
lemma lifts_inv_bind1: ∀a,I,T2,cs,V1,U1. ⬆*[cs] ⓑ{a,I} V1. U1 ≡ T2 →
∃∃V2,U2. ⬆*[cs] V1 ≡ V2 & ⬆*[cs + 1] U1 ≡ U2 &
T2 = ⓑ{a,I} V2. U2.
]
qed-.
-(* Basic_1: was: lift1_flat *)
lemma lifts_inv_flat1: ∀I,T2,cs,V1,U1. ⬆*[cs] ⓕ{I} V1. U1 ≡ T2 →
∃∃V2,U2. ⬆*[cs] V1 ≡ V2 & ⬆*[cs] U1 ≡ U2 &
T2 = ⓕ{I} V2. U2.
(* Properties concerning basic term relocation ******************************)
-(* Basic_1: was: lift1_xhg (right to left) *)
lemma lifts_lift_trans_le: ∀T1,T,cs. ⬆*[cs] T1 ≡ T → ∀T2. ⬆[0, 1] T ≡ T2 →
∃∃T0. ⬆[0, 1] T1 ≡ T0 & ⬆*[cs + 1] T0 ≡ T2.
#T1 #T #cs #H elim H -T1 -T -cs
]
qed-.
-(* Basic_1: was: lift1_free (right to left) *)
lemma lifts_lift_trans: ∀cs,i,i0. @❪i, cs❫ ≘ i0 →
∀cs0. cs + 1 ▭ i + 1 ≘ cs0 + 1 →
∀T1,T0. ⬆*[cs0] T1 ≡ T0 →
(* Main properties **********************************************************)
-(* Basic_1: was: lifts1_xhg (right to left) *)
lemma liftsv_liftv_trans_le: ∀T1s,Ts,cs. ⬆*[cs] T1s ≡ Ts →
∀T2s:list term. ⬆[0, 1] Ts ≡ T2s →
∃∃T0s. ⬆[0, 1] T1s ≡ T0s & ⬆*[cs + 1] T0s ≡ T2s.
(* Main properties **********************************************************)
-(* Basic_1: was: lift1_lift1 (left to right) *)
theorem lifts_trans: ∀T1,T,cs1. ⬆*[cs1] T1 ≡ T → ∀T2:term. ∀cs2. ⬆*[cs2] T ≡ T2 →
⬆*[cs1 @@ cs2] T1 ≡ T2.
#T1 #T #cs1 #H elim H -T1 -T -cs1 /3 width=3 by lifts_cons/
(* Basic inversion lemmas ***************************************************)
-(* Basic_1: was: lifts1_flat (left to right) *)
lemma lifts_inv_applv1: ∀V1s,U1,T2,cs. ⬆*[cs] Ⓐ V1s. U1 ≡ T2 →
∃∃V2s,U2. ⬆*[cs] V1s ≡ V2s & ⬆*[cs] U1 ≡ U2 &
T2 = Ⓐ V2s. U2.
(* Basic properties *********************************************************)
-(* Basic_1: was: lifts1_flat (right to left) *)
lemma lifts_applv: ∀V1s,V2s,cs. ⬆*[cs] V1s ≡ V2s →
∀T1,T2. ⬆*[cs] T1 ≡ T2 →
⬆*[cs] Ⓐ V1s. T1 ≡ Ⓐ V2s. T2.
(* Basic properties *********************************************************)
-(* Basic_1: was: nf2_sort *)
lemma cnr_sort: ∀G,L,k. ⦃G, L⦄ ⊢ ➡ 𝐍⦃⋆k⦄.
#G #L #k #X #H
>(cpr_inv_sort1 … H) //
#H elim (lt_refl_false i) /2 width=3 by lt_to_le_to_lt/
qed.
-(* Basic_1: was only: nf2_csort_lref *)
lemma cnr_lref_atom: ∀G,L,i. ⬇[i] L ≡ ⋆ → ⦃G, L⦄ ⊢ ➡ 𝐍⦃#i⦄.
#G #L #i #HL @cnr_lref_free >(drop_fwd_length … HL) -HL //
qed.
-(* Basic_1: was: nf2_abst *)
lemma cnr_abst: ∀a,G,L,W,T. ⦃G, L⦄ ⊢ ➡ 𝐍⦃W⦄ → ⦃G, L.ⓛW⦄ ⊢ ➡ 𝐍⦃T⦄ → ⦃G, L⦄ ⊢ ➡ 𝐍⦃ⓛ{a}W.T⦄.
#a #G #L #W #T #HW #HT #X #H
elim (cpr_inv_abst1 … H) -H #W0 #T0 #HW0 #HT0 #H destruct
<(HW … HW0) -W0 <(HT … HT0) -T0 //
qed.
-(* Basic_1: was only: nf2_appl_lref *)
lemma cnr_appl_simple: ∀G,L,V,T. ⦃G, L⦄ ⊢ ➡ 𝐍⦃V⦄ → ⦃G, L⦄ ⊢ ➡ 𝐍⦃T⦄ → 𝐒⦃T⦄ → ⦃G, L⦄ ⊢ ➡ 𝐍⦃ⓐV.T⦄.
#G #L #V #T #HV #HT #HS #X #H
elim (cpr_inv_appl1_simple … H) -H // #V0 #T0 #HV0 #HT0 #H destruct
<(HV … HV0) -V0 <(HT … HT0) -T0 //
qed.
-(* Basic_1: was: nf2_dec *)
axiom cnr_dec: ∀G,L,T1. ⦃G, L⦄ ⊢ ➡ 𝐍⦃T1⦄ ∨
∃∃T2. ⦃G, L⦄ ⊢ T1 ➡ T2 & (T1 = T2 → ⊥).
-
-(* Basic_1: removed theorems 1: nf2_abst_shift *)
(* Advanced properties ******************************************************)
-(* Basic_1: was: nf2_lref_abst *)
lemma cnr_lref_abst: ∀G,L,K,V,i. ⬇[i] L ≡ K. ⓛV → ⦃G, L⦄ ⊢ ➡ 𝐍⦃#i⦄.
#G #L #K #V #i #HLK #X #H
elim (cpr_inv_lref1 … H) -H // *
(* Relocation properties ****************************************************)
-(* Basic_1: was: nf2_lift *)
lemma cnr_lift: ∀G,L0,L,T,T0,s,l,m. ⦃G, L⦄ ⊢ ➡ 𝐍⦃T⦄ →
⬇[s, l, m] L0 ≡ L → ⬆[l, m] T ≡ T0 → ⦃G, L0⦄ ⊢ ➡ 𝐍⦃T0⦄.
#G #L0 #L #T #T0 #s #l #m #HLT #HL0 #HT0 #X #H
>(lift_mono … HT10 … HT0) -T1 -X //
qed.
-(* Note: this was missing in basic_1 *)
lemma cnr_inv_lift: ∀G,L0,L,T,T0,s,l,m. ⦃G, L0⦄ ⊢ ➡ 𝐍⦃T0⦄ →
⬇[s, l, m] L0 ≡ L → ⬆[l, m] T ≡ T0 → ⦃G, L⦄ ⊢ ➡ 𝐍⦃T⦄.
#G #L0 #L #T #T0 #s #l #m #HLT0 #HL0 #HT0 #X #H
(* CONTEXT-SENSITIVE PARALLEL REDUCTION FOR TERMS ***************************)
(* activate genv *)
-(* Basic_1: includes: pr0_delta1 pr2_delta1 pr2_thin_dx *)
(* Note: cpr_flat: does not hold in basic_1 *)
inductive cpr: relation4 genv lenv term term ≝
| cpr_atom : ∀I,G,L. cpr G L (⓪{I}) (⓪{I})
]
qed-.
-(* Basic_1: was by definition: pr2_free *)
lemma tpr_cpr: ∀G,T1,T2. ⦃G, ⋆⦄ ⊢ T1 ➡ T2 → ∀L. ⦃G, L⦄ ⊢ T1 ➡ T2.
#G #T1 #T2 #HT12 #L
lapply (lsubr_cpr_trans … HT12 L ?) //
qed.
-(* Basic_1: includes by definition: pr0_refl *)
lemma cpr_refl: ∀G,T,L. ⦃G, L⦄ ⊢ T ➡ T.
#G #T elim T -T // * /2 width=1 by cpr_bind, cpr_flat/
qed.
-(* Basic_1: was: pr2_head_1 *)
lemma cpr_pair_sn: ∀I,G,L,V1,V2. ⦃G, L⦄ ⊢ V1 ➡ V2 →
∀T. ⦃G, L⦄ ⊢ ②{I}V1.T ➡ ②{I}V2.T.
* /2 width=1 by cpr_bind, cpr_flat/ qed.
⬆[O, i + 1] V2 ≡ T2 & I = LRef i.
/2 width=3 by cpr_inv_atom1_aux/ qed-.
-(* Basic_1: includes: pr0_gen_sort pr2_gen_sort *)
lemma cpr_inv_sort1: ∀G,L,T2,k. ⦃G, L⦄ ⊢ ⋆k ➡ T2 → T2 = ⋆k.
#G #L #T2 #k #H
elim (cpr_inv_atom1 … H) -H //
* #K #V #V2 #i #_ #_ #_ #H destruct
qed-.
-(* Basic_1: includes: pr0_gen_lref pr2_gen_lref *)
lemma cpr_inv_lref1: ∀G,L,T2,i. ⦃G, L⦄ ⊢ #i ➡ T2 →
T2 = #i ∨
∃∃K,V,V2. ⬇[i] L ≡ K. ⓓV & ⦃G, K⦄ ⊢ V ➡ V2 &
a = true & I = Abbr.
/2 width=3 by cpr_inv_bind1_aux/ qed-.
-(* Basic_1: includes: pr0_gen_abbr pr2_gen_abbr *)
lemma cpr_inv_abbr1: ∀a,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓓ{a}V1.T1 ➡ U2 → (
∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡ V2 & ⦃G, L. ⓓV1⦄ ⊢ T1 ➡ T2 &
U2 = ⓓ{a}V2.T2
/3 width=5 by ex3_2_intro, ex3_intro, or_introl, or_intror/
qed-.
-(* Basic_1: includes: pr0_gen_abst pr2_gen_abst *)
lemma cpr_inv_abst1: ∀a,G,L,V1,T1,U2. ⦃G, L⦄ ⊢ ⓛ{a}V1.T1 ➡ U2 →
∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡ V2 & ⦃G, L.ⓛV1⦄ ⊢ T1 ➡ T2 &
U2 = ⓛ{a}V2.T2.
U2 = ⓓ{a}W2.ⓐV2.T2 & I = Appl.
/2 width=3 by cpr_inv_flat1_aux/ qed-.
-(* Basic_1: includes: pr0_gen_appl pr2_gen_appl *)
lemma cpr_inv_appl1: ∀G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓐV1.U1 ➡ U2 →
∨∨ ∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡ V2 & ⦃G, L⦄ ⊢ U1 ➡ T2 &
U2 = ⓐV2.T2
]
qed-.
-(* Basic_1: includes: pr0_gen_cast pr2_gen_cast *)
lemma cpr_inv_cast1: ∀G,L,V1,U1,U2. ⦃G, L⦄ ⊢ ⓝ V1. U1 ➡ U2 → (
∃∃V2,T2. ⦃G, L⦄ ⊢ V1 ➡ V2 & ⦃G, L⦄ ⊢ U1 ➡ T2 &
U2 = ⓝ V2. T2
| #T2 #_ #_ #H destruct
]
qed-.
-
-(* Basic_1: removed theorems 11:
- pr0_subst0_back pr0_subst0_fwd pr0_subst0
- pr2_head_2 pr2_cflat clear_pr2_trans
- pr2_gen_csort pr2_gen_cflat pr2_gen_cbind
- pr2_gen_ctail pr2_ctail
-*)
-(* Basic_1: removed local theorems 4:
- pr0_delta_eps pr0_cong_delta
- pr2_free_free pr2_free_delta
-*)
(* Relocation properties ****************************************************)
-(* Basic_1: includes: pr0_lift pr2_lift *)
lemma cpr_lift: ∀G. d_liftable (cpr G).
#G #K #T1 #T2 #H elim H -G -K -T1 -T2
[ #I #G #K #L #s #l #m #_ #U1 #H1 #U2 #H2
]
qed.
-(* Basic_1: includes: pr0_gen_lift pr2_gen_lift *)
lemma cpr_inv_lift1: ∀G. d_deliftable_sn (cpr G).
#G #L #U1 #U2 #H elim H -G -L -U1 -U2
[ * #i #G #L #K #s #l #m #_ #T1 #H
λa,I. I = Abst ∨ Bind2 a I = Bind2 false Abbr.
(* activate genv *)
-(* reducible terms *)
inductive crr (G:genv): relation2 lenv term ≝
| crr_delta : ∀L,K,V,i. ⬇[i] L ≡ K.ⓓV → crr G L (#i)
| crr_appl_sn: ∀L,V,T. crr G L V → crr G L (ⓐV.T)
(* REDUCIBLE TERMS FOR CONTEXT-SENSITIVE EXTENDED REDUCTION *****************)
(* activate genv *)
-(* extended reducible terms *)
inductive crx (h) (g) (G:genv): relation2 lenv term ≝
| crx_sort : ∀L,k,d. deg h g k (d+1) → crx h g G L (⋆k)
| crx_delta : ∀I,L,K,V,i. ⬇[i] L ≡ K.ⓑ{I}V → crx h g G L (#i)
(* "QRST" PARALLEL REDUCTION FOR CLOSURES ***********************************)
-(* alternative definition of fpbq *)
+(* Note: alternative definition of fpbq *)
definition fpbqa: ∀h. sd h → tri_relation genv lenv term ≝
λh,g,G1,L1,T1,G2,L2,T2.
⦃G1, L1, T1⦄ ≡[0] ⦃G2, L2, T2⦄ ∨ ⦃G1, L1, T1⦄ ≻[h, g] ⦃G2, L2, T2⦄.
(* Basic inversion lemmas ***************************************************)
-(* Basic_1: includes: wcpr0_gen_sort *)
lemma lpr_inv_atom1: ∀G,L2. ⦃G, ⋆⦄ ⊢ ➡ L2 → L2 = ⋆.
/2 width=4 by lpx_sn_inv_atom1_aux/ qed-.
-(* Basic_1: includes: wcpr0_gen_head *)
lemma lpr_inv_pair1: ∀I,G,K1,V1,L2. ⦃G, K1.ⓑ{I}V1⦄ ⊢ ➡ L2 →
∃∃K2,V2. ⦃G, K1⦄ ⊢ ➡ K2 & ⦃G, K1⦄ ⊢ V1 ➡ V2 & L2 = K2.ⓑ{I}V2.
/2 width=3 by lpx_sn_inv_pair1_aux/ qed-.
lemma lpr_fwd_length: ∀G,L1,L2. ⦃G, L1⦄ ⊢ ➡ L2 → |L1| = |L2|.
/2 width=2 by lpx_sn_fwd_length/ qed-.
-
-(* Basic_1: removed theorems 3: wcpr0_getl wcpr0_getl_back
- pr0_subst1_back
-*)
(* Properties on local environment slicing ***********************************)
-(* Basic_1: includes: wcpr0_drop *)
lemma lpr_drop_conf: ∀G. dropable_sn (lpr G).
/3 width=6 by lpx_sn_deliftable_dropable, cpr_inv_lift1/ qed-.
-(* Basic_1: includes: wcpr0_drop_back *)
lemma drop_lpr_trans: ∀G. dedropable_sn (lpr G).
/3 width=10 by lpx_sn_liftable_dedropable, cpr_lift/ qed-.
/3 width=12 by cpr_lift, cpr_delta, ex2_intro/
qed-.
-(* Basic_1: includes: pr0_delta_delta pr2_delta_delta *)
fact cpr_conf_lpr_delta_delta:
∀G,L0,i. (
∀L,T. ⦃G, L0, #i⦄ ⊐+ ⦃G, L, T⦄ →
/4 width=5 by cpr_bind, cpr_flat, cpr_beta, ex2_intro/
qed-.
-(* Basic-1: includes:
- pr0_cong_upsilon_refl pr0_cong_upsilon_zeta
- pr0_cong_upsilon_cong pr0_cong_upsilon_delta
-*)
fact cpr_conf_lpr_flat_theta:
∀a,G,L0,V0,W0,T0. (
∀L,T. ⦃G, L0, ⓐV0.ⓓ{a}W0.T0⦄ ⊐+ ⦃G, L, T⦄ →
/4 width=5 by cpr_bind, cpr_flat, ex2_intro/ (**) (* full auto not tried *)
qed-.
-(* Basic_1: was: pr0_upsilon_upsilon *)
fact cpr_conf_lpr_theta_theta:
∀a,G,L0,V0,W0,T0. (
∀L,T. ⦃G, L0, ⓐV0.ⓓ{a}W0.T0⦄ ⊐+ ⦃G, L, T⦄ →
]
qed-.
-(* Basic_1: includes: pr0_confluence pr2_confluence *)
theorem cpr_conf: ∀G,L. confluent … (cpr G L).
/2 width=6 by cpr_conf_lpr/ qed-.
(* Properties on lazy equivalence for local environments ********************)
-(* Note: contains a proof of llpx_cpx_conf *)
+(* Note: this contains a proof of llpx_cpx_conf *)
lemma lleq_lpx_trans: ∀h,g,G,L2,K2. ⦃G, L2⦄ ⊢ ➡[h, g] K2 →
∀L1,T,l. L1 ≡[T, l] L2 →
∃∃K1. ⦃G, L1⦄ ⊢ ➡[h, g] K1 & K1 ≡[T, l] K2.
(* BASIC SLICING FOR LOCAL ENVIRONMENTS *************************************)
-(* Basic_1: includes: drop_skip_bind *)
inductive drop (s:bool): relation4 nat nat lenv lenv ≝
| drop_atom: ∀l,m. (s = Ⓕ → m = 0) → drop s l m (⋆) (⋆)
| drop_pair: ∀I,L,V. drop s 0 0 (L.ⓑ{I}V) (L.ⓑ{I}V)
]
qed-.
-(* Basic_1: was: drop_gen_sort *)
lemma drop_inv_atom1: ∀L2,s,l,m. ⬇[s, l, m] ⋆ ≡ L2 → L2 = ⋆ ∧ (s = Ⓕ → m = 0).
/2 width=4 by drop_inv_atom1_aux/ qed-.
elim (lt_refl_false … H)
qed-.
-(* Basic_1: was: drop_gen_drop *)
lemma drop_inv_drop1_lt: ∀I,K,L2,V,s,m.
⬇[s, 0, m] K.ⓑ{I}V ≡ L2 → 0 < m → ⬇[s, 0, m-1] K ≡ L2.
#I #K #L2 #V #s #m #H #Hm
]
qed-.
-(* Basic_1: was: drop_gen_skip_l *)
lemma drop_inv_skip1: ∀I,K1,V1,L2,s,l,m. ⬇[s, l, m] K1.ⓑ{I}V1 ≡ L2 → 0 < l →
∃∃K2,V2. ⬇[s, l-1, m] K1 ≡ K2 &
⬆[l-1, m] V2 ≡ V1 &
]
qed-.
-(* Basic_1: was: drop_gen_skip_r *)
lemma drop_inv_skip2: ∀I,L1,K2,V2,s,l,m. ⬇[s, l, m] L1 ≡ K2.ⓑ{I}V2 → 0 < l →
∃∃K1,V1. ⬇[s, l-1, m] K1 ≡ K2 & ⬆[l-1, m] V2 ≡ V1 &
L1 = K1.ⓑ{I}V1.
lemma drop_refl_atom_O2: ∀s,l. ⬇[s, l, O] ⋆ ≡ ⋆.
/2 width=1 by drop_atom/ qed.
-(* Basic_1: was by definition: drop_refl *)
lemma drop_refl: ∀L,l,s. ⬇[s, l, 0] L ≡ L.
#L elim L -L //
#L #I #V #IHL #l #s @(nat_ind_plus … l) -l /2 width=1 by drop_pair, drop_skip/
(* Basic forward lemmas *****************************************************)
-(* Basic_1: was: drop_S *)
lemma drop_fwd_drop2: ∀L1,I2,K2,V2,s,m. ⬇[s, O, m] L1 ≡ K2. ⓑ{I2} V2 →
⬇[s, O, m + 1] L1 ≡ K2.
#L1 elim L1 -L1
]
qed-.
-(* Basic_1: was: drop_gen_refl *)
lemma drop_inv_O2: ∀L1,L2,s,l. ⬇[s, l, 0] L1 ≡ L2 → L1 = L2.
/2 width=5 by drop_inv_O2_aux/ qed-.
lemma drop_inv_T: ∀I,L,K,V,s,m. ⬇[Ⓣ, 0, m] L ≡ K.ⓑ{I}V → ⬇[s, 0, m] L ≡ K.ⓑ{I}V.
#I #L #K #V * /2 width=1 by drop_inv_FT/
qed-.
-
-(* Basic_1: removed theorems 50:
- drop_ctail drop_skip_flat
- cimp_flat_sx cimp_flat_dx cimp_bind cimp_getl_conf
- drop_clear drop_clear_O drop_clear_S
- clear_gen_sort clear_gen_bind clear_gen_flat clear_gen_flat_r
- clear_gen_all clear_clear clear_mono clear_trans clear_ctail clear_cle
- getl_ctail_clen getl_gen_tail clear_getl_trans getl_clear_trans
- getl_clear_bind getl_clear_conf getl_dec getl_drop getl_drop_conf_lt
- getl_drop_conf_ge getl_conf_ge_drop getl_drop_conf_rev
- drop_getl_trans_lt drop_getl_trans_le drop_getl_trans_ge
- getl_drop_trans getl_flt getl_gen_all getl_gen_sort getl_gen_O
- getl_gen_S getl_gen_2 getl_gen_flat getl_gen_bind getl_conf_le
- getl_trans getl_refl getl_head getl_flat getl_ctail getl_mono
-*)
(* Main properties **********************************************************)
-(* Basic_1: was: drop_mono *)
theorem drop_mono: ∀L,L1,s1,l,m. ⬇[s1, l, m] L ≡ L1 →
∀L2,s2. ⬇[s2, l, m] L ≡ L2 → L1 = L2.
#L #L1 #s1 #l #m #H elim H -L -L1 -l -m
]
qed-.
-(* Basic_1: was: drop_conf_ge *)
theorem drop_conf_ge: ∀L,L1,s1,l1,m1. ⬇[s1, l1, m1] L ≡ L1 →
∀L2,s2,m2. ⬇[s2, 0, m2] L ≡ L2 → l1 + m1 ≤ m2 →
⬇[s2, 0, m2 - m1] L1 ≡ L2.
]
qed.
-(* Note: apparently this was missing in basic_1 *)
theorem drop_conf_be: ∀L0,L1,s1,l1,m1. ⬇[s1, l1, m1] L0 ≡ L1 →
∀L2,m2. ⬇[m2] L0 ≡ L2 → l1 ≤ m2 → m2 ≤ l1 + m1 →
∃∃L. ⬇[s1, 0, l1 + m1 - m2] L2 ≡ L & ⬇[l1] L1 ≡ L.
]
qed-.
-(* Note: apparently this was missing in basic_1 *)
theorem drop_conf_le: ∀L0,L1,s1,l1,m1. ⬇[s1, l1, m1] L0 ≡ L1 →
∀L2,s2,m2. ⬇[s2, 0, m2] L0 ≡ L2 → m2 ≤ l1 →
∃∃L. ⬇[s2, 0, m2] L1 ≡ L & ⬇[s1, l1 - m2, m1] L2 ≡ L.
qed-.
(* Note: with "s2", the conclusion parameter is "s1 ∨ s2" *)
-(* Basic_1: was: drop_trans_ge *)
theorem drop_trans_ge: ∀L1,L,s1,l1,m1. ⬇[s1, l1, m1] L1 ≡ L →
∀L2,m2. ⬇[m2] L ≡ L2 → l1 ≤ m2 → ⬇[s1, 0, m1 + m2] L1 ≡ L2.
#L1 #L #s1 #l1 #m1 #H elim H -L1 -L -l1 -m1
]
qed.
-(* Basic_1: was: drop_trans_le *)
theorem drop_trans_le: ∀L1,L,s1,l1,m1. ⬇[s1, l1, m1] L1 ≡ L →
∀L2,s2,m2. ⬇[s2, 0, m2] L ≡ L2 → m2 ≤ l1 →
∃∃L0. ⬇[s2, 0, m2] L1 ≡ L0 & ⬇[s1, l1 - m2, m1] L0 ≡ L2.
]
qed-.
-(* Basic_1: was: drop_conf_lt *)
lemma drop_conf_lt: ∀L,L1,s1,l1,m1. ⬇[s1, l1, m1] L ≡ L1 →
∀I,K2,V2,s2,m2. ⬇[s2, 0, m2] L ≡ K2.ⓑ{I}V2 →
m2 < l1 → let l ≝ l1 - m2 - 1 in
#K1 #V1 #HK21 #HV12 #H destruct /2 width=5 by ex3_2_intro/
qed-.
-(* Note: apparently this was missing in basic_1 *)
lemma drop_trans_lt: ∀L1,L,s1,l1,m1. ⬇[s1, l1, m1] L1 ≡ L →
∀I,L2,V2,s2,m2. ⬇[s2, 0, m2] L ≡ L2.ⓑ{I}V2 →
m2 < l1 → let l ≝ l1 - m2 - 1 in
(* OPTIONAL SUPCLOSURE ******************************************************)
-(* alternative definition of fquq *)
+(* Note: alternative definition of fquq *)
definition fquqa: tri_relation genv lenv term ≝ tri_RC … fqu.
interpretation
(* BASIC TERM RELOCATION ****************************************************)
-(* Basic_1: includes:
- lift_sort lift_lref_lt lift_lref_ge lift_bind lift_flat
-*)
inductive lift: relation4 nat nat term term ≝
| lift_sort : ∀k,l,m. lift l m (⋆k) (⋆k)
| lift_lref_lt: ∀i,l,m. i < l → lift l m (#i) (#i)
]
qed-.
-(* Basic_1: was: lift_gen_sort *)
lemma lift_inv_sort2: ∀l,m,T1,k. ⬆[l,m] T1 ≡ ⋆k → T1 = ⋆k.
/2 width=5 by lift_inv_sort2_aux/ qed-.
]
qed-.
-(* Basic_1: was: lift_gen_lref *)
lemma lift_inv_lref2: ∀l,m,T1,i. ⬆[l,m] T1 ≡ #i →
(i < l ∧ T1 = #i) ∨ (l + m ≤ i ∧ T1 = #(i - m)).
/2 width=3 by lift_inv_lref2_aux/ qed-.
-(* Basic_1: was: lift_gen_lref_lt *)
lemma lift_inv_lref2_lt: ∀l,m,T1,i. ⬆[l,m] T1 ≡ #i → i < l → T1 = #i.
#l #m #T1 #i #H elim (lift_inv_lref2 … H) -H * //
#Hli #_ #Hil lapply (le_to_lt_to_lt … Hli Hil) -Hli -Hil #Hll
elim (lt_refl_false … Hll)
qed-.
-(* Basic_1: was: lift_gen_lref_false *)
lemma lift_inv_lref2_be: ∀l,m,T1,i. ⬆[l,m] T1 ≡ #i →
l ≤ i → i < l + m → ⊥.
#l #m #T1 #i #H elim (lift_inv_lref2 … H) -H *
elim (lt_refl_false … H)
qed-.
-(* Basic_1: was: lift_gen_lref_ge *)
lemma lift_inv_lref2_ge: ∀l,m,T1,i. ⬆[l,m] T1 ≡ #i → l + m ≤ i → T1 = #(i - m).
#l #m #T1 #i #H elim (lift_inv_lref2 … H) -H * //
#Hil #_ #Hli lapply (le_to_lt_to_lt … Hli Hil) -Hli -Hil #Hll
]
qed-.
-(* Basic_1: was: lift_gen_bind *)
lemma lift_inv_bind2: ∀l,m,T1,a,I,V2,U2. ⬆[l,m] T1 ≡ ⓑ{a,I} V2. U2 →
∃∃V1,U1. ⬆[l,m] V1 ≡ V2 & ⬆[l+1,m] U1 ≡ U2 &
T1 = ⓑ{a,I} V1. U1.
]
qed-.
-(* Basic_1: was: lift_gen_flat *)
lemma lift_inv_flat2: ∀l,m,T1,I,V2,U2. ⬆[l,m] T1 ≡ ⓕ{I} V2. U2 →
∃∃V1,U1. ⬆[l,m] V1 ≡ V2 & ⬆[l,m] U1 ≡ U2 &
T1 = ⓕ{I} V1. U1.
]
qed-.
-(* Basic_1: was: thead_x_lift_y_y *)
lemma lift_inv_pair_xy_y: ∀I,T,V,l,m. ⬆[l, m] ②{I} V. T ≡ T → ⊥.
#J #T elim T -T
[ * #i #V #l #m #H
(* Basic properties *********************************************************)
-(* Basic_1: was: lift_lref_gt *)
lemma lift_lref_ge_minus: ∀l,m,i. l + m ≤ i → ⬆[l, m] #(i - m) ≡ #i.
#l #m #i #H >(plus_minus_m_m i m) in ⊢ (? ? ? ? %); /3 width=2 by lift_lref_ge, le_plus_to_minus_r, le_plus_b/
qed.
lemma lift_lref_ge_minus_eq: ∀l,m,i,j. l + m ≤ i → j = i - m → ⬆[l, m] #j ≡ #i.
/2 width=1 by lift_lref_ge_minus/ qed-.
-(* Basic_1: was: lift_r *)
lemma lift_refl: ∀T,l. ⬆[l, 0] T ≡ T.
#T elim T -T
[ * #i // #l elim (lt_or_ge i l) /2 width=1 by lift_lref_lt, lift_lref_ge/
]
qed.
-(* Basic_1: was: lift_free (right to left) *)
lemma lift_split: ∀l1,m2,T1,T2. ⬆[l1, m2] T1 ≡ T2 →
∀l2,m1. l1 ≤ l2 → l2 ≤ l1 + m1 → m1 ≤ m2 →
∃∃T. ⬆[l1, m1] T1 ≡ T & ⬆[l2, m2 - m1] T ≡ T2.
]
qed.
-(* Basic_1: was only: dnf_dec2 dnf_dec *)
lemma is_lift_dec: ∀T2,l,m. Decidable (∃T1. ⬆[l,m] T1 ≡ T2).
#T1 elim T1 -T1
[ * [1,3: /3 width=2 by lift_sort, lift_gref, ex_intro, or_introl/ ] #i #l #m
]
]
qed.
-
-(* Basic_1: removed theorems 7:
- lift_head lift_gen_head
- lift_weight_map lift_weight lift_weight_add lift_weight_add_O
- lift_tlt_dx
-*)
(* Main properties ***********************************************************)
-(* Basic_1: was: lift_inj *)
theorem lift_inj: ∀l,m,T1,U. ⬆[l,m] T1 ≡ U → ∀T2. ⬆[l,m] T2 ≡ U → T1 = T2.
#l #m #T1 #U #H elim H -l -m -T1 -U
[ #k #l #m #X #HX
]
qed-.
-(* Basic_1: was: lift_gen_lift *)
theorem lift_div_le: ∀l1,m1,T1,T. ⬆[l1, m1] T1 ≡ T →
∀l2,m2,T2. ⬆[l2 + m1, m2] T2 ≡ T →
l1 ≤ l2 →
]
qed.
-(* Note: apparently this was missing in basic_1 *)
theorem lift_div_be: ∀l1,m1,T1,T. ⬆[l1, m1] T1 ≡ T →
∀m,m2,T2. ⬆[l1 + m, m2] T2 ≡ T →
m ≤ m1 → m1 ≤ m + m2 →
]
qed-.
-(* Basic_1: was: lift_free (left to right) *)
theorem lift_trans_be: ∀l1,m1,T1,T. ⬆[l1, m1] T1 ≡ T →
∀l2,m2,T2. ⬆[l2, m2] T ≡ T2 →
l1 ≤ l2 → l2 ≤ l1 + m1 → ⬆[l1, m1 + m2] T1 ≡ T2.
]
qed.
-(* Basic_1: was: lift_d (right to left) *)
theorem lift_trans_le: ∀l1,m1,T1,T. ⬆[l1, m1] T1 ≡ T →
∀l2,m2,T2. ⬆[l2, m2] T ≡ T2 → l2 ≤ l1 →
∃∃T0. ⬆[l2, m2] T1 ≡ T0 & ⬆[l1 + m2, m1] T0 ≡ T2.
]
qed.
-(* Basic_1: was: lift_d (left to right) *)
theorem lift_trans_ge: ∀l1,m1,T1,T. ⬆[l1, m1] T1 ≡ T →
∀l2,m2,T2. ⬆[l2, m2] T ≡ T2 → l1 + m1 ≤ l2 →
∃∃T0. ⬆[l2 - m1, m2] T1 ≡ T0 & ⬆[l1, m1] T0 ≡ T2.
(* SN POINTWISE EXTENSION OF A CONTEXT-SENSITIVE REALTION FOR TERMS *********)
-(* alternative definition of lpx_sn *)
+(* Note: alternative definition of lpx_sn *)
definition lpx_sn_alt: relation3 lenv term term → relation lenv ≝
λR,L1,L2. |L1| = |L2| ∧
(∀I1,I2,K1,K2,V1,V2,i.
| #G #L #W #T #U #d #_ #k0 #H destruct
qed-.
-(* Basic_1: was just: sty0_gen_sort *)
lemma lstas_inv_sort1: ∀h,G,L,X,k,d. ⦃G, L⦄ ⊢ ⋆k •*[h, d] X → X = ⋆((next h)^d k).
/2 width=5 by lstas_inv_sort1_aux/
qed-.
#K #W #V #d #_ #_ #_ <plus_n_Sm #H destruct
qed-.
-(* Basic_1: was just: sty0_gen_lref *)
lemma lstas_inv_lref1_S: ∀h,G,L,X,i,d. ⦃G, L⦄ ⊢ #i •*[h, d+1] X →
(∃∃K,V,W. ⬇[i] L ≡ K.ⓓV & ⦃G, K⦄ ⊢ V •*[h, d+1] W &
⬆[0, i+1] W ≡ X
]
qed-.
-(* Basic_1: was just: sty0_gen_bind *)
lemma lstas_inv_bind1: ∀h,a,I,G,L,V,T,X,d. ⦃G, L⦄ ⊢ ⓑ{a,I}V.T •*[h, d] X →
∃∃U. ⦃G, L.ⓑ{I}V⦄ ⊢ T •*[h, d] U & X = ⓑ{a,I}V.U.
/2 width=3 by lstas_inv_bind1_aux/
]
qed-.
-(* Basic_1: was just: sty0_gen_appl *)
lemma lstas_inv_appl1: ∀h,G,L,V,T,X,d. ⦃G, L⦄ ⊢ ⓐV.T •*[h, d] X →
∃∃U. ⦃G, L⦄ ⊢ T •*[h, d] U & X = ⓐV.U.
/2 width=3 by lstas_inv_appl1_aux/
]
qed-.
-(* Basic_1: was just: sty0_gen_cast *)
lemma lstas_inv_cast1: ∀h,G,L,W,T,U,d. ⦃G, L⦄ ⊢ ⓝW.T •*[h, d] U → ⦃G, L⦄ ⊢ T •*[h, d] U.
/2 width=4 by lstas_inv_cast1_aux/
qed-.
-
-(* Basic_1: removed theorems 7:
- sty1_abbr sty1_appl sty1_bind sty1_cast2
- sty1_correct sty1_lift sty1_trans
-*)
(* Properties on relocation *************************************************)
-(* Basic_1: was just: sty0_lift *)
lemma lstas_lift: ∀h,G,d. d_liftable (lstas h G d).
#h #G #d #L1 #T1 #U1 #H elim H -G -L1 -T1 -U1 -d
[ #G #L1 #d #k #L2 #s #l #m #HL21 #X1 #H1 #X2 #H2
(* Inversion lemmas on relocation *******************************************)
-(* Note: apparently this was missing in basic_1 *)
lemma lstas_inv_lift1: ∀h,G,d. d_deliftable_sn (lstas h G d).
#h #G #d #L2 #T2 #U2 #H elim H -G -L2 -T2 -U2 -d
[ #G #L2 #d #k #L1 #s #l #m #_ #X #H
]
qed-.
-(* Note: apparently this was missing in basic_1 *)
theorem lstas_mono: ∀h,G,L,d. singlevalued … (lstas h d G L).
#h #G #L #d #T #T1 #H elim H -G -L -T -T1 -d
[ #G #L #d #k #X #H >(lstas_inv_sort1 … H) -X //
(* Advanced inversion lemmas ************************************************)
-(* Basic_1: was just: sty0_correct *)
lemma lstas_correct: ∀h,G,L,T1,T,d1. ⦃G, L⦄ ⊢ T1 •*[h, d1] T →
∀d2. ∃T2. ⦃G, L⦄ ⊢ T •*[h, d2] T2.
#h #G #L #T1 #T #d1 #H elim H -G -L -T1 -T -d1
}
.object-color {
- color: deepskyblue;
+ color: blue;
}
.name-color {
- color: seagreen;
+ color: teal;
}
.error-color {
let req = string_of_request "select" p in
let ph = "Filter..." in
KP.printf "<input class=\"filter\" type=\"text\" autocomplete=\"on\" \
- placeholder=%S onkeyup=\"filter('%s','%s');\" id=\"f.%s\"\n/>" ph req p p
+ placeholder=%S oninput=\"filter('%s','%s');\" id=\"f.%s\"\n/>" ph req p p
in
let button_specs = [
"default", "Refresh";
arity_abbr -> arity_ldef
arity_abst -> arity_ldec
arity_head -> arity_abst
+clt_thead -> clt_ctail
)
(rel
(ver "2.1")
- (old "1.1/CTail" "1.1/TApp" "1.1/TCons" "1.1/THeads" "1.1/TList" "1.1/TNil" "1.1/Void" "1.1/abst_dec" "1.1/ahead_inj_snd" "1.1/aplus" "1.1/aplus_ahead_simpl" "1.1/aplus_asort_O_simpl" "1.1/aplus_asort_le_simpl" "1.1/aplus_asort_simpl" "1.1/aplus_assoc" "1.1/aplus_asucc" "1.1/aplus_asucc_false" "1.1/aplus_gz_ge" "1.1/aplus_gz_le" "1.1/aplus_inj" "1.1/aplus_reg_r" "1.1/aplus_sort_O_S_simpl" "1.1/aplus_sort_S_S_simpl" "1.1/app1" "1.1/aprem" "1.1/aprem_asucc" "1.1/aprem_gen_head_O" "1.1/aprem_gen_head_S" "1.1/aprem_gen_sort" "1.1/aprem_repl" "1.1/aprem_succ" "1.1/aprem_zero" "1.1/arity_appls_abbr" "1.1/arity_appls_appl" "1.1/arity_appls_bind" "1.1/arity_appls_cast" "1.1/arity_aprem" "1.1/arity_cimp_conf" "1.1/arity_fsubst0" "1.1/arity_gen_appls" "1.1/arity_gen_cvoid" "1.1/arity_gen_cvoid_subst0" "1.1/arity_repl" "1.1/arity_sred_wcpr0_pr0" "1.1/arity_sred_wcpr0_pr1" "1.1/arity_subst0" "1.1/asucc" "1.1/asucc_gen_head" "1.1/asucc_gen_sort" "1.1/asucc_inj" "1.1/asucc_repl" "1.1/bind_dec_not" "1.1/binder_dec" "1.1/cbk" "1.1/chead_ctail" "1.1/cimp" "1.1/cimp_bind" "1.1/cimp_flat_dx" "1.1/cimp_flat_sx" "1.1/cimp_getl_conf" "1.1/cle" "1.1/cle_flt_trans" "1.1/cle_head" "1.1/cle_r" "1.1/cle_trans_head" "1.1/clear" "1.1/clear_bind" "1.1/clear_cle" "1.1/clear_clear" "1.1/clear_ctail" "1.1/clear_flat" "1.1/clear_gen_all" "1.1/clear_gen_bind" "1.1/clear_gen_flat" "1.1/clear_gen_flat_r" "1.1/clear_gen_sort" "1.1/clear_getl_trans" "1.1/clear_mono" "1.1/clear_pc3_trans" "1.1/clear_pr2_trans" "1.1/clear_pr3_trans" "1.1/clear_trans" "1.1/clear_wf3_trans" "1.1/clt" "1.1/clt_cong" "1.1/clt_head" "1.1/clt_thead" "1.1/clt_wf__q_ind" "1.1/clt_wf_ind" "1.1/cnt" "1.1/cnt_head" "1.1/cnt_lift" "1.1/cnt_sort" "1.1/csuba_clear_conf" "1.1/csuba_clear_trans" "1.1/csuba_gen_void" "1.1/csuba_gen_void_rev" "1.1/csuba_getl_abbr" "1.1/csuba_getl_abbr_rev" "1.1/csuba_getl_abst" "1.1/csuba_getl_abst_rev" "1.1/csuba_void" "1.1/csubc_clear_conf" "1.1/csubc_getl_conf" "1.1/csubc_void" "1.1/csubst0" "1.1/csubst0_both" "1.1/csubst0_both_bind" "1.1/csubst0_clear_O" "1.1/csubst0_clear_O_back" "1.1/csubst0_clear_S" "1.1/csubst0_clear_trans" "1.1/csubst0_drop_eq" "1.1/csubst0_drop_eq_back" "1.1/csubst0_drop_gt" "1.1/csubst0_drop_gt_back" "1.1/csubst0_drop_lt" "1.1/csubst0_drop_lt_back" "1.1/csubst0_fst" "1.1/csubst0_fst_bind" "1.1/csubst0_gen_S_bind_2" "1.1/csubst0_gen_head" "1.1/csubst0_gen_sort" "1.1/csubst0_getl_ge" "1.1/csubst0_getl_ge_back" "1.1/csubst0_getl_lt" "1.1/csubst0_getl_lt_back" "1.1/csubst0_snd" "1.1/csubst0_snd_bind" "1.1/csubst1" "1.1/csubst1_bind" "1.1/csubst1_flat" "1.1/csubst1_gen_head" "1.1/csubst1_getl_ge" "1.1/csubst1_getl_ge_back" "1.1/csubst1_getl_lt" "1.1/csubst1_head" "1.1/csubst1_refl" "1.1/csubst1_sing" "1.1/csubt" "1.1/csubt_abst" "1.1/csubt_clear_conf" "1.1/csubt_csuba" "1.1/csubt_drop_abbr" "1.1/csubt_drop_abst" "1.1/csubt_drop_flat" "1.1/csubt_gen_abbr" "1.1/csubt_gen_abst" "1.1/csubt_gen_bind" "1.1/csubt_gen_flat" "1.1/csubt_getl_abbr" "1.1/csubt_getl_abst" "1.1/csubt_head" "1.1/csubt_pc3" "1.1/csubt_pr2" "1.1/csubt_refl" "1.1/csubt_sort" "1.1/csubt_ty3" "1.1/csubt_ty3_ld" "1.1/csubt_void" "1.1/csubv" "1.1/csubv_bind" "1.1/csubv_bind_same" "1.1/csubv_clear_conf" "1.1/csubv_clear_conf_void" "1.1/csubv_drop_conf" "1.1/csubv_flat" "1.1/csubv_getl_conf" "1.1/csubv_getl_conf_void" "1.1/csubv_refl" "1.1/csubv_sort" "1.1/csubv_void" "1.1/drop_clear" "1.1/drop_clear_O" "1.1/drop_clear_S" "1.1/drop_ctail" "1.1/drop_getl_trans_ge" "1.1/drop_getl_trans_le" "1.1/drop_getl_trans_lt" "1.1/drop1_getl_trans" "1.1/ex1__leq_sort_SS" "1.1/ex1_ty3" "1.1/fsubst0" "1.1/fsubst0_both" "1.1/fsubst0_fst" "1.1/fsubst0_gen_base" "1.1/fsubst0_snd" "1.1/getl" "1.1/getl_clear_bind" "1.1/getl_clear_conf" "1.1/getl_clear_trans" "1.1/getl_conf_ge_drop" "1.1/getl_conf_le" "1.1/getl_csubst1" "1.1/getl_ctail" "1.1/getl_ctail_clen" "1.1/getl_dec" "1.1/getl_drop" "1.1/getl_drop_conf_ge" "1.1/getl_drop_conf_lt" "1.1/getl_drop_conf_rev" "1.1/getl_drop_trans" "1.1/getl_flat" "1.1/getl_flt" "1.1/getl_gen_2" "1.1/getl_gen_O" "1.1/getl_gen_S" "1.1/getl_gen_all" "1.1/getl_gen_bind" "1.1/getl_gen_flat" "1.1/getl_gen_sort" "1.1/getl_gen_tail" "1.1/getl_head" "1.1/getl_intro" "1.1/getl_mono" "1.1/getl_refl" "1.1/getl_trans" "1.1/getl_wf3_trans" "1.1/leq" "1.1/leq_ahead_asucc_false" "1.1/leq_ahead_false_1" "1.1/leq_ahead_false_2" "1.1/leq_asucc" "1.1/leq_asucc_false" "1.1/leq_eq" "1.1/leq_gen_head1" "1.1/leq_gen_head2" "1.1/leq_gen_sort1" "1.1/leq_gen_sort2" "1.1/leq_head" "1.1/leq_leqz" "1.1/leq_refl" "1.1/leq_sort" "1.1/leq_sym" "1.1/leq_trans" "1.1/leqz" "1.1/leqz_head" "1.1/leqz_leq" "1.1/leqz_sort" "1.1/lift_tle" "1.1/lift_tlt_dx" "1.1/lift_weight" "1.1/lift_weight_add" "1.1/lift_weight_add_O" "1.1/lift_weight_map" "1.1/llt" "1.1/llt_head_dx" "1.1/llt_head_sx" "1.1/llt_repl" "1.1/llt_trans" "1.1/llt_wf__q_ind" "1.1/llt_wf_ind" "1.1/lref_map" "1.1/lweight" "1.1/lweight_repl" "1.1/next_plus" "1.1/next_plus_assoc" "1.1/next_plus_gz" "1.1/next_plus_lt" "1.1/next_plus_next" "1.1/nf2_gen_void" "1.1/nfs2" "1.1/nfs2_tapp" "1.1/node_inh" "1.1/not_abbr_void" "1.1/not_abst_void" "1.1/not_void_abst" "1.1/pc1" "1.1/pc1_head" "1.1/pc1_head_1" "1.1/pc1_head_2" "1.1/pc1_pr0_r" "1.1/pc1_pr0_u" "1.1/pc1_pr0_u2" "1.1/pc1_pr0_x" "1.1/pc1_refl" "1.1/pc1_s" "1.1/pc1_t" "1.1/pc3_fsubst0" "1.1/pc3_pc1" "1.1/pc3_pr0_pr2_t" "1.1/pc3_pr2_fsubst0" "1.1/pc3_pr2_fsubst0_back" "1.1/pc3_wcpr0" "1.1/pc3_wcpr0__pc3_wcpr0_t_aux" "1.1/pc3_wcpr0_t" "1.1/pr0" "1.1/pr0_beta" "1.1/pr0_comp" "1.1/pr0_confluence" "1.1/pr0_confluence__pr0_cong_delta" "1.1/pr0_confluence__pr0_cong_upsilon_cong" "1.1/pr0_confluence__pr0_cong_upsilon_delta" "1.1/pr0_confluence__pr0_cong_upsilon_refl" "1.1/pr0_confluence__pr0_cong_upsilon_zeta" "1.1/pr0_confluence__pr0_delta_delta" "1.1/pr0_confluence__pr0_delta_tau" "1.1/pr0_confluence__pr0_upsilon_upsilon" "1.1/pr0_delta" "1.1/pr0_delta1" "1.1/pr0_gen_abbr" "1.1/pr0_gen_abst" "1.1/pr0_gen_appl" "1.1/pr0_gen_cast" "1.1/pr0_gen_lift" "1.1/pr0_gen_lref" "1.1/pr0_gen_sort" "1.1/pr0_gen_void" "1.1/pr0_lift" "1.1/pr0_refl" "1.1/pr0_subst0" "1.1/pr0_subst0_back" "1.1/pr0_subst0_fwd" "1.1/pr0_subst1" "1.1/pr0_subst1_back" "1.1/pr0_subst1_fwd" "1.1/pr0_tau" "1.1/pr0_upsilon" "1.1/pr0_zeta" "1.1/pr1" "1.1/pr1_comp" "1.1/pr1_confluence" "1.1/pr1_eta" "1.1/pr1_head_1" "1.1/pr1_head_2" "1.1/pr1_pr0" "1.1/pr1_refl" "1.1/pr1_sing" "1.1/pr1_strip" "1.1/pr1_t" "1.1/pr2_ctail" "1.1/pr2_gen_ctail" "1.1/pr2_gen_void" "1.1/pr3_gen_void" "1.1/pr3_pr0_pr2_t" "1.1/pr3_pr1" "1.1/pr3_wcpr0_t" "1.1/r_S" "1.1/r_arith0" "1.1/r_arith1" "1.1/r_arith2" "1.1/r_arith3" "1.1/r_arith4" "1.1/r_arith5" "1.1/r_arith6" "1.1/r_arith7" "1.1/r_dis" "1.1/r_minus" "1.1/r_plus" "1.1/r_plus_sym" "1.1/s_S" "1.1/s_arith0" "1.1/s_arith1" "1.1/s_inc" "1.1/s_inj" "1.1/s_le" "1.1/s_le_gen" "1.1/s_lt" "1.1/s_lt_gen" "1.1/s_minus" "1.1/s_plus" "1.1/s_plus_sym" "1.1/s_r" "1.1/sty0" "1.1/sty0_abbr" "1.1/sty0_abst" "1.1/sty0_appl" "1.1/sty0_bind" "1.1/sty0_cast" "1.1/sty0_correct" "1.1/sty0_gen_appl" "1.1/sty0_gen_bind" "1.1/sty0_gen_cast" "1.1/sty0_gen_lref" "1.1/sty0_gen_sort" "1.1/sty0_lift" "1.1/sty0_sort" "1.1/sty1_cnt" "1.1/sty1_sty0" "1.1/subst" "1.1/subst_head" "1.1/subst_lift_SO" "1.1/subst_lref_eq" "1.1/subst_lref_gt" "1.1/subst_lref_lt" "1.1/subst_sort" "1.1/subst_subst0" "1.1/subst0" "1.1/subst0_both" "1.1/subst0_confluence_eq" "1.1/subst0_confluence_lift" "1.1/subst0_confluence_neq" "1.1/subst0_fst" "1.1/subst0_gen_head" "1.1/subst0_gen_lift_false" "1.1/subst0_gen_lift_ge" "1.1/subst0_gen_lift_lt" "1.1/subst0_gen_lift_rev_ge" "1.1/subst0_gen_lref" "1.1/subst0_gen_sort" "1.1/subst0_lift_ge" "1.1/subst0_lift_ge_S" "1.1/subst0_lift_ge_s" "1.1/subst0_lift_lt" "1.1/subst0_lref" "1.1/subst0_refl" "1.1/subst0_snd" "1.1/subst0_subst0" "1.1/subst0_subst0_back" "1.1/subst0_tlt" "1.1/subst0_tlt_head" "1.1/subst0_trans" "1.1/subst0_weight_le" "1.1/subst0_weight_lt" "1.1/tcons_tapp_ex" "1.1/theads_tapp" "1.1/tle" "1.1/tle_r" "1.1/tlist_ind_rev" "1.1/tlt" "1.1/tlt_head_dx" "1.1/tlt_head_sx" "1.1/tlt_trans" "1.1/tlt_wf__q_ind" "1.1/tlt_wf_ind" "1.1/tslen" "1.1/tslt" "1.1/tslt_wf__q_ind" "1.1/tslt_wf_ind" "1.1/ty3" "1.1/ty3_abbr" "1.1/ty3_abst" "1.1/ty3_acyclic" "1.1/ty3_appl" "1.1/ty3_arity" "1.1/ty3_bind" "1.1/ty3_cast" "1.1/ty3_conv" "1.1/ty3_correct" "1.1/ty3_cred_pr2" "1.1/ty3_cred_pr3" "1.1/ty3_csubst0" "1.1/ty3_fsubst0" "1.1/ty3_gen_abst_abst" "1.1/ty3_gen_appl" "1.1/ty3_gen_appl_nf2" "1.1/ty3_gen_bind" "1.1/ty3_gen_cabbr" "1.1/ty3_gen_cast" "1.1/ty3_gen_cvoid" "1.1/ty3_gen_lift" "1.1/ty3_gen_lref" "1.1/ty3_gen_sort" "1.1/ty3_getl_subst0" "1.1/ty3_inference" "1.1/ty3_inv_appls_lref_nf2" "1.1/ty3_inv_lref_lref_nf2" "1.1/ty3_inv_lref_nf2" "1.1/ty3_inv_lref_nf2_pc3" "1.1/ty3_lift" "1.1/ty3_nf2_gen__ty3_nf2_inv_abst_aux" "1.1/ty3_nf2_inv_abst" "1.1/ty3_nf2_inv_abst_premise" "1.1/ty3_nf2_inv_abst_premise_csort" "1.1/ty3_nf2_inv_all" "1.1/ty3_nf2_inv_sort" "1.1/ty3_predicative" "1.1/ty3_repellent" "1.1/ty3_sconv" "1.1/ty3_sconv_pc3" "1.1/ty3_shift1" "1.1/ty3_sn3" "1.1/ty3_sort" "1.1/ty3_sred_back" "1.1/ty3_sred_pr0" "1.1/ty3_sred_pr1" "1.1/ty3_sred_pr2" "1.1/ty3_sred_pr3" "1.1/ty3_sred_wcpr0_pr0" "1.1/ty3_sty0" "1.1/ty3_subst0" "1.1/ty3_tred" "1.1/ty3_typecheck" "1.1/ty3_unique" "1.1/tys3" "1.1/tys3_cons" "1.1/tys3_gen_cons" "1.1/tys3_gen_nil" "1.1/tys3_nil" "1.1/wadd" "1.1/wadd_O" "1.1/wadd_le" "1.1/wadd_lt" "1.1/wcpr0" "1.1/wcpr0_comp" "1.1/wcpr0_drop" "1.1/wcpr0_drop_back" "1.1/wcpr0_gen_head" "1.1/wcpr0_gen_sort" "1.1/wcpr0_getl" "1.1/wcpr0_getl_back" "1.1/wcpr0_refl" "1.1/weight" "1.1/weight_add_O" "1.1/weight_add_S" "1.1/weight_eq" "1.1/weight_le" "1.1/weight_map" "1.1/wf3" "1.1/wf3_bind" "1.1/wf3_clear_conf" "1.1/wf3_flat" "1.1/wf3_gen_bind1" "1.1/wf3_gen_flat1" "1.1/wf3_gen_head2" "1.1/wf3_gen_sort1" "1.1/wf3_getl_conf" "1.1/wf3_idem" "1.1/wf3_mono" "1.1/wf3_pc3_conf" "1.1/wf3_pr2_conf" "1.1/wf3_pr3_conf" "1.1/wf3_sort" "1.1/wf3_total" "1.1/wf3_ty3" "1.1/wf3_ty3_conf" "1.1/wf3_void")
+ (old "1.1/CTail" "1.1/TApp" "1.1/TCons" "1.1/THeads" "1.1/TList" "1.1/TNil" "1.1/Void" "1.1/abst_dec" "1.1/ahead_inj_snd" "1.1/aplus" "1.1/aplus_ahead_simpl" "1.1/aplus_asort_O_simpl" "1.1/aplus_asort_le_simpl" "1.1/aplus_asort_simpl" "1.1/aplus_assoc" "1.1/aplus_asucc" "1.1/aplus_asucc_false" "1.1/aplus_gz_ge" "1.1/aplus_gz_le" "1.1/aplus_inj" "1.1/aplus_reg_r" "1.1/aplus_sort_O_S_simpl" "1.1/aplus_sort_S_S_simpl" "1.1/app1" "1.1/aprem" "1.1/aprem_asucc" "1.1/aprem_gen_head_O" "1.1/aprem_gen_head_S" "1.1/aprem_gen_sort" "1.1/aprem_repl" "1.1/aprem_succ" "1.1/aprem_zero" "1.1/arity_appls_abbr" "1.1/arity_appls_appl" "1.1/arity_appls_bind" "1.1/arity_appls_cast" "1.1/arity_aprem" "1.1/arity_cimp_conf" "1.1/arity_fsubst0" "1.1/arity_gen_appls" "1.1/arity_gen_cvoid" "1.1/arity_gen_cvoid_subst0" "1.1/arity_nf2_inv_all" "1.1/arity_repellent" "1.1/arity_repl" "1.1/arity_sred_wcpr0_pr0" "1.1/arity_sred_wcpr0_pr1" "1.1/arity_subst0" "1.1/asucc" "1.1/asucc_gen_head" "1.1/asucc_gen_sort" "1.1/asucc_inj" "1.1/asucc_repl" "1.1/bind_dec_not" "1.1/binder_dec" "1.1/cbk" "1.1/chead_ctail" "1.1/cimp" "1.1/cimp_bind" "1.1/cimp_flat_dx" "1.1/cimp_flat_sx" "1.1/cimp_getl_conf" "1.1/cle" "1.1/cle_flt_trans" "1.1/cle_head" "1.1/cle_r" "1.1/cle_trans_head" "1.1/clear" "1.1/clear_bind" "1.1/clear_cle" "1.1/clear_clear" "1.1/clear_ctail" "1.1/clear_flat" "1.1/clear_gen_all" "1.1/clear_gen_bind" "1.1/clear_gen_flat" "1.1/clear_gen_flat_r" "1.1/clear_gen_sort" "1.1/clear_getl_trans" "1.1/clear_mono" "1.1/clear_pc3_trans" "1.1/clear_pr2_trans" "1.1/clear_pr3_trans" "1.1/clear_trans" "1.1/clear_wf3_trans" "1.1/clt" "1.1/clt_cong" "1.1/clt_head" "1.1/clt_thead" "1.1/clt_wf__q_ind" "1.1/clt_wf_ind" "1.1/cnt" "1.1/cnt_head" "1.1/cnt_lift" "1.1/cnt_sort" "1.1/csuba_clear_conf" "1.1/csuba_clear_trans" "1.1/csuba_gen_void" "1.1/csuba_gen_void_rev" "1.1/csuba_getl_abbr" "1.1/csuba_getl_abbr_rev" "1.1/csuba_getl_abst" "1.1/csuba_getl_abst_rev" "1.1/csuba_void" "1.1/csubc_clear_conf" "1.1/csubc_getl_conf" "1.1/csubc_void" "1.1/csubst0" "1.1/csubst0_both" "1.1/csubst0_both_bind" "1.1/csubst0_clear_O" "1.1/csubst0_clear_O_back" "1.1/csubst0_clear_S" "1.1/csubst0_clear_trans" "1.1/csubst0_drop_eq" "1.1/csubst0_drop_eq_back" "1.1/csubst0_drop_gt" "1.1/csubst0_drop_gt_back" "1.1/csubst0_drop_lt" "1.1/csubst0_drop_lt_back" "1.1/csubst0_fst" "1.1/csubst0_fst_bind" "1.1/csubst0_gen_S_bind_2" "1.1/csubst0_gen_head" "1.1/csubst0_gen_sort" "1.1/csubst0_getl_ge" "1.1/csubst0_getl_ge_back" "1.1/csubst0_getl_lt" "1.1/csubst0_getl_lt_back" "1.1/csubst0_snd" "1.1/csubst0_snd_bind" "1.1/csubst1" "1.1/csubst1_bind" "1.1/csubst1_flat" "1.1/csubst1_gen_head" "1.1/csubst1_getl_ge" "1.1/csubst1_getl_ge_back" "1.1/csubst1_getl_lt" "1.1/csubst1_head" "1.1/csubst1_refl" "1.1/csubst1_sing" "1.1/csubt" "1.1/csubt_abst" "1.1/csubt_clear_conf" "1.1/csubt_csuba" "1.1/csubt_drop_abbr" "1.1/csubt_drop_abst" "1.1/csubt_drop_flat" "1.1/csubt_gen_abbr" "1.1/csubt_gen_abst" "1.1/csubt_gen_bind" "1.1/csubt_gen_flat" "1.1/csubt_getl_abbr" "1.1/csubt_getl_abst" "1.1/csubt_head" "1.1/csubt_pc3" "1.1/csubt_pr2" "1.1/csubt_refl" "1.1/csubt_sort" "1.1/csubt_ty3" "1.1/csubt_ty3_ld" "1.1/csubt_void" "1.1/csubv" "1.1/csubv_bind" "1.1/csubv_bind_same" "1.1/csubv_clear_conf" "1.1/csubv_clear_conf_void" "1.1/csubv_drop_conf" "1.1/csubv_flat" "1.1/csubv_getl_conf" "1.1/csubv_getl_conf_void" "1.1/csubv_refl" "1.1/csubv_sort" "1.1/csubv_void" "1.1/drop_clear" "1.1/drop_clear_O" "1.1/drop_clear_S" "1.1/drop_conf_rev" "1.1/drop_ctail" "1.1/drop_getl_trans_ge" "1.1/drop_getl_trans_le" "1.1/drop_getl_trans_lt" "1.1/drop_skip" "1.1/drop_skip_flat" "1.1/drop1_getl_trans" "1.1/ex1__leq_sort_SS" "1.1/ex1_ty3" "1.1/flt" "1.1/flt_arith0" "1.1/flt_arith1" "1.1/flt_arith2" "1.1/flt_trans" "1.1/flt_wf__q_ind" "1.1/flt_wf_ind" "1.1/fsubst0" "1.1/fsubst0_both" "1.1/fsubst0_fst" "1.1/fsubst0_gen_base" "1.1/fsubst0_snd" "1.1/getl" "1.1/getl_clear_bind" "1.1/getl_clear_conf" "1.1/getl_clear_trans" "1.1/getl_conf_ge_drop" "1.1/getl_conf_le" "1.1/getl_csubst1" "1.1/getl_ctail" "1.1/getl_ctail_clen" "1.1/getl_dec" "1.1/getl_drop" "1.1/getl_drop_conf_ge" "1.1/getl_drop_conf_lt" "1.1/getl_drop_conf_rev" "1.1/getl_drop_trans" "1.1/getl_flat" "1.1/getl_flt" "1.1/getl_gen_2" "1.1/getl_gen_O" "1.1/getl_gen_S" "1.1/getl_gen_all" "1.1/getl_gen_bind" "1.1/getl_gen_flat" "1.1/getl_gen_sort" "1.1/getl_gen_tail" "1.1/getl_head" "1.1/getl_intro" "1.1/getl_mono" "1.1/getl_refl" "1.1/getl_trans" "1.1/getl_wf3_trans" "1.1/iso_flats_flat_bind_false" "1.1/iso_flats_lref_bind_false" "1.1/leq" "1.1/leq_ahead_asucc_false" "1.1/leq_ahead_false_1" "1.1/leq_ahead_false_2" "1.1/leq_asucc" "1.1/leq_asucc_false" "1.1/leq_eq" "1.1/leq_gen_head1" "1.1/leq_gen_head2" "1.1/leq_gen_sort1" "1.1/leq_gen_sort2" "1.1/leq_head" "1.1/leq_leqz" "1.1/leq_refl" "1.1/leq_sort" "1.1/leq_sym" "1.1/leq_trans" "1.1/leqz" "1.1/leqz_head" "1.1/leqz_leq" "1.1/leqz_sort" "1.1/lift_gen_head" "1.1/lift_head" "1.1/lift_tle" "1.1/lift_tlt_dx" "1.1/lift_weight" "1.1/lift_weight_add" "1.1/lift_weight_add_O" "1.1/lift_weight_map" "1.1/lifts_inj" "1.1/llt" "1.1/llt_head_dx" "1.1/llt_head_sx" "1.1/llt_repl" "1.1/llt_trans" "1.1/llt_wf__q_ind" "1.1/llt_wf_ind" "1.1/lref_map" "1.1/lweight" "1.1/lweight_repl" "1.1/next_plus" "1.1/next_plus_assoc" "1.1/next_plus_gz" "1.1/next_plus_lt" "1.1/next_plus_next" "1.1/nf2_abst_shift" "1.1/nf2_appl_lref" "1.1/nf2_gen_void" "1.1/nfs2" "1.1/nfs2_tapp" "1.1/node_inh" "1.1/not_abbr_abst" "1.1/not_abbr_void" "1.1/not_abst_void" "1.1/not_void_abst" "1.1/pc1" "1.1/pc1_head" "1.1/pc1_head_1" "1.1/pc1_head_2" "1.1/pc1_pr0_r" "1.1/pc1_pr0_u" "1.1/pc1_pr0_u2" "1.1/pc1_pr0_x" "1.1/pc1_refl" "1.1/pc1_s" "1.1/pc1_t" "1.1/pc3_fsubst0" "1.1/pc3_pc1" "1.1/pc3_pr0_pr2_t" "1.1/pc3_pr2_fsubst0" "1.1/pc3_pr2_fsubst0_back" "1.1/pc3_wcpr0" "1.1/pc3_wcpr0__pc3_wcpr0_t_aux" "1.1/pc3_wcpr0_t" "1.1/pr0" "1.1/pr0_beta" "1.1/pr0_comp" "1.1/pr0_confluence" "1.1/pr0_confluence__pr0_cong_delta" "1.1/pr0_confluence__pr0_cong_upsilon_cong" "1.1/pr0_confluence__pr0_cong_upsilon_delta" "1.1/pr0_confluence__pr0_cong_upsilon_refl" "1.1/pr0_confluence__pr0_cong_upsilon_zeta" "1.1/pr0_confluence__pr0_delta_delta" "1.1/pr0_confluence__pr0_delta_tau" "1.1/pr0_confluence__pr0_upsilon_upsilon" "1.1/pr0_delta" "1.1/pr0_delta1" "1.1/pr0_gen_abbr" "1.1/pr0_gen_abst" "1.1/pr0_gen_appl" "1.1/pr0_gen_cast" "1.1/pr0_gen_lift" "1.1/pr0_gen_lref" "1.1/pr0_gen_sort" "1.1/pr0_gen_void" "1.1/pr0_lift" "1.1/pr0_refl" "1.1/pr0_subst0" "1.1/pr0_subst0_back" "1.1/pr0_subst0_fwd" "1.1/pr0_subst1" "1.1/pr0_subst1_back" "1.1/pr0_subst1_fwd" "1.1/pr0_tau" "1.1/pr0_upsilon" "1.1/pr0_zeta" "1.1/pr1" "1.1/pr1_comp" "1.1/pr1_confluence" "1.1/pr1_eta" "1.1/pr1_head_1" "1.1/pr1_head_2" "1.1/pr1_pr0" "1.1/pr1_refl" "1.1/pr1_sing" "1.1/pr1_strip" "1.1/pr1_t" "1.1/pr2_cflat" "1.1/pr2_confluence__pr2_delta_delta" "1.1/pr2_confluence__pr2_free_delta" "1.1/pr2_confluence__pr2_free_free" "1.1/pr2_ctail" "1.1/pr2_delta" "1.1/pr2_delta1" "1.1/pr2_gen_cbind" "1.1/pr2_gen_cflat" "1.1/pr2_gen_csort" "1.1/pr2_gen_ctail" "1.1/pr2_gen_void" "1.1/pr2_head_2" "1.1/pr2_thin_dx" "1.1/pr3_cflat" "1.1/pr3_gen_void" "1.1/pr3_pr0_pr2_t" "1.1/pr3_pr1" "1.1/pr3_wcpr0_t" "1.1/r_S" "1.1/r_arith0" "1.1/r_arith1" "1.1/r_arith2" "1.1/r_arith3" "1.1/r_arith4" "1.1/r_arith5" "1.1/r_arith6" "1.1/r_arith7" "1.1/r_dis" "1.1/r_minus" "1.1/r_plus" "1.1/r_plus_sym" "1.1/s_S" "1.1/s_arith0" "1.1/s_arith1" "1.1/s_inc" "1.1/s_inj" "1.1/s_le" "1.1/s_le_gen" "1.1/s_lt" "1.1/s_lt_gen" "1.1/s_minus" "1.1/s_plus" "1.1/s_plus_sym" "1.1/s_r" "1.1/sn3_cflat" "1.1/sn3_gen_cflat" "1.1/sty0" "1.1/sty0_abbr" "1.1/sty0_abst" "1.1/sty0_appl" "1.1/sty0_bind" "1.1/sty0_cast" "1.1/sty0_correct" "1.1/sty0_gen_appl" "1.1/sty0_gen_bind" "1.1/sty0_gen_cast" "1.1/sty0_gen_lref" "1.1/sty0_gen_sort" "1.1/sty0_lift" "1.1/sty0_sort" "1.1/sty1" "1.1/sty1_abbr" "1.1/sty1_appl" "1.1/sty1_bind" "1.1/sty1_cast2" "1.1/sty1_cnt" "1.1/sty1_correct" "1.1/sty1_lift" "1.1/sty1_sing" "1.1/sty1_sty0" "1.1/sty1_trans" "1.1/subst" "1.1/subst_head" "1.1/subst_lift_SO" "1.1/subst_lref_eq" "1.1/subst_lref_gt" "1.1/subst_lref_lt" "1.1/subst_sort" "1.1/subst_subst0" "1.1/subst0" "1.1/subst0_both" "1.1/subst0_confluence_eq" "1.1/subst0_confluence_lift" "1.1/subst0_confluence_neq" "1.1/subst0_fst" "1.1/subst0_gen_head" "1.1/subst0_gen_lift_false" "1.1/subst0_gen_lift_ge" "1.1/subst0_gen_lift_lt" "1.1/subst0_gen_lift_rev_ge" "1.1/subst0_gen_lref" "1.1/subst0_gen_sort" "1.1/subst0_lift_ge" "1.1/subst0_lift_ge_S" "1.1/subst0_lift_ge_s" "1.1/subst0_lift_lt" "1.1/subst0_lref" "1.1/subst0_refl" "1.1/subst0_snd" "1.1/subst0_subst0" "1.1/subst0_subst0_back" "1.1/subst0_tlt" "1.1/subst0_tlt_head" "1.1/subst0_trans" "1.1/subst0_weight_le" "1.1/subst0_weight_lt" "1.1/tcons_tapp_ex" "1.1/theads_tapp" "1.1/tle" "1.1/tle_r" "1.1/tlist_ind_rev" "1.1/tlt" "1.1/tlt_head_dx" "1.1/tlt_head_sx" "1.1/tlt_trans" "1.1/tlt_wf__q_ind" "1.1/tlt_wf_ind" "1.1/tslen" "1.1/tslt" "1.1/tslt_wf__q_ind" "1.1/tslt_wf_ind" "1.1/ty3" "1.1/ty3_abbr" "1.1/ty3_abst" "1.1/ty3_acyclic" "1.1/ty3_appl" "1.1/ty3_arity" "1.1/ty3_bind" "1.1/ty3_cast" "1.1/ty3_conv" "1.1/ty3_correct" "1.1/ty3_cred_pr2" "1.1/ty3_cred_pr3" "1.1/ty3_csubst0" "1.1/ty3_fsubst0" "1.1/ty3_gen_abst_abst" "1.1/ty3_gen_appl" "1.1/ty3_gen_appl_nf2" "1.1/ty3_gen_bind" "1.1/ty3_gen_cabbr" "1.1/ty3_gen_cast" "1.1/ty3_gen_cvoid" "1.1/ty3_gen_lift" "1.1/ty3_gen_lref" "1.1/ty3_gen_sort" "1.1/ty3_getl_subst0" "1.1/ty3_inference" "1.1/ty3_inv_appls_lref_nf2" "1.1/ty3_inv_lref_lref_nf2" "1.1/ty3_inv_lref_nf2" "1.1/ty3_inv_lref_nf2_pc3" "1.1/ty3_lift" "1.1/ty3_nf2_gen__ty3_nf2_inv_abst_aux" "1.1/ty3_nf2_inv_abst" "1.1/ty3_nf2_inv_abst_premise" "1.1/ty3_nf2_inv_abst_premise_csort" "1.1/ty3_nf2_inv_all" "1.1/ty3_nf2_inv_sort" "1.1/ty3_predicative" "1.1/ty3_repellent" "1.1/ty3_sconv" "1.1/ty3_sconv_pc3" "1.1/ty3_shift1" "1.1/ty3_sn3" "1.1/ty3_sort" "1.1/ty3_sred_back" "1.1/ty3_sred_pr0" "1.1/ty3_sred_pr1" "1.1/ty3_sred_pr2" "1.1/ty3_sred_pr3" "1.1/ty3_sred_wcpr0_pr0" "1.1/ty3_sty0" "1.1/ty3_subst0" "1.1/ty3_tred" "1.1/ty3_typecheck" "1.1/ty3_unique" "1.1/tys3" "1.1/tys3_cons" "1.1/tys3_gen_cons" "1.1/tys3_gen_nil" "1.1/tys3_nil" "1.1/wadd" "1.1/wadd_O" "1.1/wadd_le" "1.1/wadd_lt" "1.1/wcpr0" "1.1/wcpr0_comp" "1.1/wcpr0_drop" "1.1/wcpr0_drop_back" "1.1/wcpr0_gen_head" "1.1/wcpr0_gen_sort" "1.1/wcpr0_getl" "1.1/wcpr0_getl_back" "1.1/wcpr0_refl" "1.1/weight" "1.1/weight_add_O" "1.1/weight_add_S" "1.1/weight_eq" "1.1/weight_le" "1.1/weight_map" "1.1/wf3" "1.1/wf3_bind" "1.1/wf3_clear_conf" "1.1/wf3_flat" "1.1/wf3_gen_bind1" "1.1/wf3_gen_flat1" "1.1/wf3_gen_head2" "1.1/wf3_gen_sort1" "1.1/wf3_getl_conf" "1.1/wf3_idem" "1.1/wf3_mono" "1.1/wf3_pc3_conf" "1.1/wf3_pr2_conf" "1.1/wf3_pr3_conf" "1.1/wf3_sort" "1.1/wf3_total" "1.1/wf3_ty3" "1.1/wf3_ty3_conf" "1.1/wf3_void")
(new)
)
(rel
(rel
(ver "2.1")
(old)
- (new "ApplDelta" "ApplDelta_lift" "ApplOmega1" "ApplOmega2" "ApplOmega3" "CP0" "CP1" "CP2" "CP3" "Delta" "Delta_lift" "GRef" "IH_da_cpr_lpr" "IH_lstas_cpr_lpr" "IH_snv_cpr_lpr" "IH_snv_lstas" "Omega1" "Omega2" "S1" "S2" "S3" "S4" "S5" "S6" "S7" "TAtom" "TC_lpx_sn_fwd_length" "TC_lpx_sn_ind" "TC_lpx_sn_inv_atom1" "TC_lpx_sn_inv_atom2" "TC_lpx_sn_inv_lpx_sn_LTC" "TC_lpx_sn_inv_pair1" "TC_lpx_sn_inv_pair1_aux" "TC_lpx_sn_inv_pair2" "TC_lpx_sn_pair" "TC_lpx_sn_pair_refl" "aaa_inv_gref" "aaa_inv_gref_aux" "applv" "applv_simple" "cir_gref" "cix_gref" "cnr_appl_simple" "cnx_appl_simple" "cpr_inv_appl1_simple" "cpr_inv_gref1" "cpr_llpx_sn_conf" "cpx_inv_appl1_simple" "cpx_inv_gref1" "cpx_llpx_sn_conf" "cpy_inv_gref1" "cpys_inv_gref1" "crr_inv_gref" "crr_inv_gref_aux" "crx_inv_gref" "crx_inv_gref_aux" "csx_appl_simple" "csx_appl_simple_tsts" "csx_applv_beta" "csx_applv_cast" "csx_applv_cnx" "csx_applv_delta" "csx_applv_sort" "csx_applv_theta" "csx_fwd_applv" "da_inv_gref" "da_inv_gref_aux" "eq_genv_dec" "frees_inv_gref" "genv" "item0" "length_inv_pos_dx" "length_inv_pos_dx_ltail" "length_inv_pos_sn" "length_inv_pos_sn_ltail" "length_inv_zero_dx" "length_inv_zero_sn" "lift_gref" "lift_inv_gref1" "lift_inv_gref1_aux" "lift_inv_gref2" "lift_inv_gref2_aux" "lift_simple_dx" "lift_simple_sn" "lifts_applv" "lifts_inv_applv1" "lifts_inv_gref1" "lifts_simple_dx" "lifts_simple_sn" "lleq_gref" "lleq_llpx_sn_conf" "lleq_llpx_sn_trans" "llpx_sn" "llpx_sn_TC_pair_dx" "llpx_sn_Y" "llpx_sn_alt" "llpx_sn_alt_inv_llpx_sn" "llpx_sn_alt_r" "llpx_sn_alt_r_bind" "llpx_sn_alt_r_flat" "llpx_sn_alt_r_free" "llpx_sn_alt_r_fwd_length" "llpx_sn_alt_r_fwd_lref" "llpx_sn_alt_r_gref" "llpx_sn_alt_r_ind_alt" "llpx_sn_alt_r_intro" "llpx_sn_alt_r_intro_alt" "llpx_sn_alt_r_inv_alt" "llpx_sn_alt_r_inv_bind" "llpx_sn_alt_r_inv_flat" "llpx_sn_alt_r_inv_lpx_sn" "llpx_sn_alt_r_lref" "llpx_sn_alt_r_skip" "llpx_sn_alt_r_sort" "llpx_sn_bind" "llpx_sn_bind_O" "llpx_sn_bind_repl_O" "llpx_sn_bind_repl_SO" "llpx_sn_co" "llpx_sn_dec" "llpx_sn_drop_conf_O" "llpx_sn_drop_trans_O" "llpx_sn_flat" "llpx_sn_free" "llpx_sn_frees_trans" "llpx_sn_frees_trans_aux" "llpx_sn_fwd_bind_O_dx" "llpx_sn_fwd_bind_dx" "llpx_sn_fwd_bind_sn" "llpx_sn_fwd_drop_dx" "llpx_sn_fwd_drop_sn" "llpx_sn_fwd_flat_dx" "llpx_sn_fwd_flat_sn" "llpx_sn_fwd_length" "llpx_sn_fwd_lref" "llpx_sn_fwd_lref_aux" "llpx_sn_fwd_lref_dx" "llpx_sn_fwd_lref_sn" "llpx_sn_fwd_pair_sn" "llpx_sn_ge" "llpx_sn_ge_up" "llpx_sn_gref" "llpx_sn_ind_alt_r" "llpx_sn_intro_alt_r" "llpx_sn_inv_S" "llpx_sn_inv_S_aux" "llpx_sn_inv_alt_r" "llpx_sn_inv_bind" "llpx_sn_inv_bind_O" "llpx_sn_inv_bind_aux" "llpx_sn_inv_flat" "llpx_sn_inv_flat_aux" "llpx_sn_inv_lift_O" "llpx_sn_inv_lift_be" "llpx_sn_inv_lift_ge" "llpx_sn_inv_lift_le" "llpx_sn_inv_lref_ge_bi" "llpx_sn_inv_lref_ge_dx" "llpx_sn_inv_lref_ge_sn" "llpx_sn_lift_ge" "llpx_sn_lift_le" "llpx_sn_llor_dx" "llpx_sn_llor_dx_sym" "llpx_sn_llor_fwd_sn" "llpx_sn_llpx_sn_alt" "llpx_sn_lpx_sn_alt_r" "llpx_sn_lref" "llpx_sn_lrefl" "llpx_sn_lreq_repl" "llpx_sn_lreq_trans" "llpx_sn_refl" "llpx_sn_skip" "llpx_sn_sort" "lpx_sn" "lpx_sn_LTC_TC_lpx_sn" "lpx_sn_alt" "lpx_sn_alt_atom" "lpx_sn_alt_fwd_length" "lpx_sn_alt_inv_atom1" "lpx_sn_alt_inv_atom2" "lpx_sn_alt_inv_lpx_sn" "lpx_sn_alt_inv_pair1" "lpx_sn_alt_inv_pair2" "lpx_sn_alt_pair" "lpx_sn_atom" "lpx_sn_conf" "lpx_sn_confluent" "lpx_sn_deliftable_dropable" "lpx_sn_drop_conf" "lpx_sn_drop_trans" "lpx_sn_dropable" "lpx_sn_dropable_aux" "lpx_sn_fwd_length" "lpx_sn_intro_alt" "lpx_sn_inv_alt" "lpx_sn_inv_atom1" "lpx_sn_inv_atom1_aux" "lpx_sn_inv_atom2" "lpx_sn_inv_atom2_aux" "lpx_sn_inv_pair" "lpx_sn_inv_pair1" "lpx_sn_inv_pair1_aux" "lpx_sn_inv_pair2" "lpx_sn_inv_pair2_aux" "lpx_sn_liftable_dedropable" "lpx_sn_llpx_sn" "lpx_sn_lpx_sn_alt" "lpx_sn_pair" "lpx_sn_refl" "lpx_sn_trans" "lpx_sn_transitive" "lreq_llpx_sn_trans" "lstas_inv_gref1" "lstas_inv_gref1_aux" "lstas_llpx_sn_conf" "lsx_gref" "nllpx_sn_inv_bind" "nllpx_sn_inv_bind_O" "nllpx_sn_inv_flat" "sh_N" "simple" "simple_atom" "simple_flat" "simple_inv_bind" "simple_inv_bind_aux" "simple_inv_pair" "simple_tsts_repl_dx" "simple_tsts_repl_sn" "snv_inv_gref" "snv_inv_gref_aux" "tsts_inv_bind_applv_simple")
+ (new "ApplDelta" "ApplDelta_lift" "ApplOmega1" "ApplOmega2" "ApplOmega3" "CP0" "CP1" "CP2" "CP3" "Delta" "Delta_lift" "GRef" "IH_da_cpr_lpr" "IH_lstas_cpr_lpr" "IH_snv_cpr_lpr" "IH_snv_lstas" "Omega1" "Omega2" "S1" "S2" "S3" "S4" "S5" "S6" "S7" "TAtom" "TC_lpx_sn_fwd_length" "TC_lpx_sn_ind" "TC_lpx_sn_inv_atom1" "TC_lpx_sn_inv_atom2" "TC_lpx_sn_inv_lpx_sn_LTC" "TC_lpx_sn_inv_pair1" "TC_lpx_sn_inv_pair1_aux" "TC_lpx_sn_inv_pair2" "TC_lpx_sn_pair" "TC_lpx_sn_pair_refl" "aaa_csx" "aaa_da" "aaa_fqu_conf" "aaa_fqup_conf" "aaa_fquq_conf" "aaa_fqus_conf" "aaa_fsb" "aaa_fsba" "aaa_ind_csx" "aaa_ind_csx_alt" "aaa_ind_csx_alt_aux" "aaa_ind_csx_aux" "aaa_ind_fpb" "aaa_ind_fpb_aux" "aaa_ind_fpbg" "aaa_ind_fpbg_aux" "aaa_inv_gref" "aaa_inv_gref_aux" "aaa_lleq_conf" "aaa_lstas" "append" "append_assoc" "append_atom_sn" "append_inj_dx" "append_inj_sn" "append_inv_pair_dx" "append_inv_refl_dx" "append_length" "applv" "applv_simple" "at_ge" "at_inv_cons" "at_inv_cons_aux" "at_inv_cons_ge" "at_inv_cons_lt" "at_inv_nil" "at_inv_nil_aux" "at_lt" "at_mono" "at_nil" "cir" "cir_appl" "cir_cnr" "cir_gref" "cir_ib2" "cir_inv_appl" "cir_inv_bind" "cir_inv_delta" "cir_inv_flat" "cir_inv_ib2" "cir_inv_lift" "cir_inv_ri2" "cir_lift" "cir_sort" "cix" "cix_appl" "cix_cnx" "cix_gref" "cix_ib2" "cix_inv_appl" "cix_inv_bind" "cix_inv_cir" "cix_inv_delta" "cix_inv_flat" "cix_inv_ib2" "cix_inv_lift" "cix_inv_ri2" "cix_inv_sort" "cix_lift" "cix_lref" "cix_sort" "cnr_appl_simple" "cnr_inv_cir" "cnr_inv_crr" "cnx" "cnx_abst" "cnx_appl_simple" "cnx_csx" "cnx_dec" "cnx_fwd_cnr" "cnx_inv_abbr" "cnx_inv_abst" "cnx_inv_appl" "cnx_inv_cix" "cnx_inv_crx" "cnx_inv_delta" "cnx_inv_eps" "cnx_inv_lift" "cnx_inv_sort" "cnx_inv_zeta" "cnx_lift" "cnx_lref_atom" "cnx_lref_free" "cnx_sort" "cnx_sort_iter" "cpr_conf_lpr" "cpr_conf_lpr_atom_atom" "cpr_conf_lpr_atom_delta" "cpr_conf_lpr_beta_beta" "cpr_conf_lpr_bind_bind" "cpr_conf_lpr_bind_zeta" "cpr_conf_lpr_delta_delta" "cpr_conf_lpr_eps_eps" "cpr_conf_lpr_flat_beta" "cpr_conf_lpr_flat_eps" "cpr_conf_lpr_flat_flat" "cpr_conf_lpr_flat_theta" "cpr_conf_lpr_theta_theta" "cpr_conf_lpr_zeta_zeta" "cpr_cpx" "cpr_fpb" "cpr_fpbq" "cpr_fwd_cir" "cpr_inv_appl1_simple" "cpr_inv_gref1" "cpr_llpx_sn_conf" "cpr_lpr_fpbs" "cpr_lpr_sta_fpbs" "cprs_cpxs" "cprs_fpbs" "cprs_lpr_conf_dx" "cprs_lpr_conf_sn" "cpx" "cpx_aaa_conf" "cpx_atom" "cpx_beta" "cpx_bind" "cpx_bind2" "cpx_cpxs" "cpx_ct" "cpx_delift" "cpx_delta" "cpx_eps" "cpx_flat" "cpx_frees_trans" "cpx_fwd_bind1_minus" "cpx_fwd_cix" "cpx_inv_abbr1" "cpx_inv_abst1" "cpx_inv_appl1" "cpx_inv_appl1_simple" "cpx_inv_atom1" "cpx_inv_atom1_aux" "cpx_inv_bind1" "cpx_inv_bind1_aux" "cpx_inv_cast1" "cpx_inv_flat1" "cpx_inv_flat1_aux" "cpx_inv_gref1" "cpx_inv_lift1" "cpx_inv_lref1" "cpx_inv_lref1_ge" "cpx_inv_sort1" "cpx_lift" "cpx_lleq_conf" "cpx_lleq_conf_dx" "cpx_lleq_conf_sn" "cpx_llpx_sn_conf" "cpx_lpx_aaa_conf" "cpx_pair_sn" "cpx_refl" "cpx_st" "cpx_theta" "cpx_zeta" "cpxe" "cpxs" "cpxs_ApplOmega_13" "cpxs_aaa_conf" "cpxs_beta" "cpxs_beta_dx" "cpxs_beta_rc" "cpxs_bind" "cpxs_bind_dx" "cpxs_bind2" "cpxs_bind2_dx" "cpxs_ct" "cpxs_delta" "cpxs_eps" "cpxs_flat" "cpxs_flat_dx" "cpxs_flat_sn" "cpxs_fpbg" "cpxs_fpbs" "cpxs_fpbs_trans" "cpxs_fqup_fpbs" "cpxs_fqus_fpbs" "cpxs_fqus_lpxs_fpbs" "cpxs_fwd_beta" "cpxs_fwd_beta_vector" "cpxs_fwd_cast" "cpxs_fwd_cast_vector" "cpxs_fwd_cnx" "cpxs_fwd_cnx_vector" "cpxs_fwd_delta" "cpxs_fwd_delta_vector" "cpxs_fwd_sort" "cpxs_fwd_sort_vector" "cpxs_fwd_theta" "cpxs_fwd_theta_vector" "cpxs_ind" "cpxs_ind_dx" "cpxs_inv_abbr1" "cpxs_inv_abst1" "cpxs_inv_appl1" "cpxs_inv_cast1" "cpxs_inv_cnx1" "cpxs_inv_lift1" "cpxs_inv_lref1" "cpxs_inv_sort1" "cpxs_lift" "cpxs_lleq_conf" "cpxs_lleq_conf_dx" "cpxs_lleq_conf_sn" "cpxs_neq_inv_step_sn" "cpxs_pair_sn" "cpxs_refl" "cpxs_sort" "cpxs_strap1" "cpxs_strap2" "cpxs_theta" "cpxs_theta_dx" "cpxs_theta_rc" "cpxs_trans" "cpxs_zeta" "cpy" "cpy_atom" "cpy_bind" "cpy_conf_eq" "cpy_conf_neq" "cpy_cpys" "cpy_flat" "cpy_full" "cpy_fwd_nlift2_ge" "cpy_fwd_tw" "cpy_fwd_up" "cpy_inv_atom1" "cpy_inv_atom1_aux" "cpy_inv_bind1" "cpy_inv_bind1_aux" "cpy_inv_flat1" "cpy_inv_flat1_aux" "cpy_inv_gref1" "cpy_inv_lift1_be" "cpy_inv_lift1_be_up" "cpy_inv_lift1_eq" "cpy_inv_lift1_ge" "cpy_inv_lift1_ge_up" "cpy_inv_lift1_le" "cpy_inv_lift1_le_up" "cpy_inv_lref1" "cpy_inv_refl_O2" "cpy_inv_refl_O2_aux" "cpy_inv_sort1" "cpy_lift_be" "cpy_lift_ge" "cpy_lift_le" "cpy_refl" "cpy_split_down" "cpy_split_up" "cpy_subst" "cpy_trans_down" "cpy_trans_ge" "cpy_weak" "cpy_weak_full" "cpy_weak_top" "cpys" "cpys_antisym_eq" "cpys_bind" "cpys_conf_eq" "cpys_conf_neq" "cpys_cpysa" "cpys_flat" "cpys_fwd_tw" "cpys_fwd_up" "cpys_ind" "cpys_ind_alt" "cpys_ind_dx" "cpys_inv_SO2" "cpys_inv_atom1" "cpys_inv_bind1" "cpys_inv_flat1" "cpys_inv_gref1" "cpys_inv_lift1_be" "cpys_inv_lift1_be_up" "cpys_inv_lift1_eq" "cpys_inv_lift1_ge" "cpys_inv_lift1_ge_up" "cpys_inv_lift1_le" "cpys_inv_lift1_le_up" "cpys_inv_lift1_subst" "cpys_inv_lift1_up" "cpys_inv_lref1" "cpys_inv_lref1_Y2" "cpys_inv_lref1_drop" "cpys_inv_refl_O2" "cpys_inv_sort1" "cpys_lift_be" "cpys_lift_ge" "cpys_lift_le" "cpys_refl" "cpys_split_up" "cpys_strap1" "cpys_strap1_down" "cpys_strap2" "cpys_strap2_down" "cpys_strip_eq" "cpys_strip_neq" "cpys_subst" "cpys_subst_Y2" "cpys_trans_down" "cpys_trans_eq" "cpys_weak" "cpys_weak_full" "cpys_weak_top" "cpysa" "cpysa_atom" "cpysa_bind" "cpysa_cpy_trans" "cpysa_flat" "cpysa_inv_cpys" "cpysa_refl" "cpysa_subst" "crr" "crr_appl_dx" "crr_appl_sn" "crr_beta" "crr_crx" "crr_delta" "crr_ib2_dx" "crr_ib2_sn" "crr_inv_appl" "crr_inv_appl_aux" "crr_inv_gref" "crr_inv_gref_aux" "crr_inv_ib2" "crr_inv_ib2_aux" "crr_inv_lift" "crr_inv_lref" "crr_inv_lref_aux" "crr_inv_sort" "crr_inv_sort_aux" "crr_lift" "crr_ri2" "crr_theta" "crx" "crx_appl_dx" "crx_appl_sn" "crx_beta" "crx_delta" "crx_ib2_dx" "crx_ib2_sn" "crx_inv_appl" "crx_inv_appl_aux" "crx_inv_gref" "crx_inv_gref_aux" "crx_inv_ib2" "crx_inv_ib2_aux" "crx_inv_lift" "crx_inv_lref" "crx_inv_lref_aux" "crx_inv_sort" "crx_inv_sort_aux" "crx_lift" "crx_ri2" "crx_sort" "crx_theta" "csx" "csx_abbr" "csx_abst" "csx_appl_beta" "csx_appl_beta_aux" "csx_appl_simple" "csx_appl_simple_tsts" "csx_appl_theta" "csx_appl_theta_aux" "csx_applv_beta" "csx_applv_cast" "csx_applv_cnx" "csx_applv_delta" "csx_applv_sort" "csx_applv_theta" "csx_cast" "csx_cpre" "csx_cpx_trans" "csx_cpxe" "csx_cpxs_trans" "csx_csxa" "csx_fpb_conf" "csx_fpbs_conf" "csx_fqu_conf" "csx_fqup_conf" "csx_fquq_conf" "csx_fqus_conf" "csx_fsb" "csx_fsb_fpbs" "csx_fwd_applv" "csx_fwd_bind" "csx_fwd_bind_dx" "csx_fwd_bind_dx_aux" "csx_fwd_flat" "csx_fwd_flat_dx" "csx_fwd_flat_dx_aux" "csx_fwd_pair_sn" "csx_fwd_pair_sn_aux" "csx_gcp" "csx_gcr" "csx_ind" "csx_ind_alt" "csx_ind_fpb" "csx_ind_fpbg" "csx_intro" "csx_intro_cpxs" "csx_inv_lift" "csx_inv_lref_bind" "csx_lift" "csx_lleq_conf" "csx_lleq_trans" "csx_lpx_conf" "csx_lpxs_conf" "csx_lref_bind" "csx_lsx" "csx_sort" "csxa" "csxa_cpxs_trans" "csxa_csx" "csxa_ind" "csxa_intro" "csxa_intro_aux" "csxa_intro_cpx" "csxv" "csxv_inv_cons" "d_appendable_sn" "d_deliftable_sn" "d_deliftable_sn_LTC" "d_deliftable_sn_llstar" "d_liftable" "d_liftable_LTC" "d_liftable_llstar" "d_liftable1" "d_liftables1" "d_liftables1_all" "d1_liftable_liftables" "d1_liftables_liftables_all" "da" "da_bind" "da_cpr_lpr" "da_cpr_lpr_aux" "da_cprs_lpr" "da_cprs_lpr_aux" "da_flat" "da_inv_bind" "da_inv_bind_aux" "da_inv_flat" "da_inv_flat_aux" "da_inv_gref" "da_inv_gref_aux" "da_inv_lift" "da_inv_lref" "da_inv_lref_aux" "da_inv_sort" "da_inv_sort_aux" "da_ldec" "da_ldef" "da_lift" "da_lstas" "da_mono" "da_scpds_lpr_aux" "da_scpes_aux" "da_sort" "dedropable_sn" "dedropable_sn_TC" "drop_FT" "drop_O1_append_sn_le" "drop_O1_append_sn_le_aux" "drop_O1_eq" "drop_O1_ex" "drop_O1_ge" "drop_O1_inj" "drop_O1_inv_append1_ge" "drop_O1_inv_append1_le" "drop_O1_le" "drop_O1_lt" "drop_O1_pair" "drop_T" "drop_atom" "drop_conf_be" "drop_conf_div" "drop_conf_le" "drop_drop_lt" "drop_fwd_be" "drop_fwd_length" "drop_fwd_length_eq1" "drop_fwd_length_eq2" "drop_fwd_length_ge" "drop_fwd_length_le_ge" "drop_fwd_length_le_le" "drop_fwd_length_le2" "drop_fwd_length_le4" "drop_fwd_length_lt2" "drop_fwd_length_lt4" "drop_fwd_length_minus2" "drop_fwd_length_minus4" "drop_fwd_lw" "drop_fwd_lw_lt" "drop_fwd_rfw" "drop_gen" "drop_inv_FT" "drop_inv_FT_aux" "drop_inv_T" "drop_inv_gen" "drop_inv_length_eq" "drop_inv_refl" "drop_lpr_trans" "drop_lprs_trans" "drop_lpx_trans" "drop_lpxs_trans" "drop_refl_atom_O2" "drop_skip_lt" "drop_split" "drop_trans_ge_comm" "dropable_dx" "dropable_dx_TC" "dropable_sn" "dropable_sn_TC" "eq_genv_dec" "fleq_fpb_trans" "fleq_fpbg_trans" "fleq_fpbq" "fleq_fpbs" "fpb" "fpb_cpx" "fpb_fpbg" "fpb_fpbg_trans" "fpb_fpbq" "fpb_fpbq_alt" "fpb_fpbs" "fpb_fpbsa_trans" "fpb_fqu" "fpb_inv_fleq" "fpb_lpx" "fpbg" "fpbg_fleq_trans" "fpbg_fpbq_trans" "fpbg_fpbs_trans" "fpbg_fwd_fpbs" "fpbg_refl" "fpbg_trans" "fpbq" "fpbq_aaa_conf" "fpbq_cpx" "fpbq_fpbg_trans" "fpbq_fpbqa" "fpbq_fpbs" "fpbq_fquq" "fpbq_ind_alt" "fpbq_inv_fpb_alt" "fpbq_lleq" "fpbq_lpx" "fpbq_refl" "fpbqa" "fpbqa_inv_fpbq" "fpbs" "fpbs_aaa_conf" "fpbs_cpx_trans_neq" "fpbs_cpxs_trans" "fpbs_fpb_trans" "fpbs_fpbg" "fpbs_fpbg_trans" "fpbs_fpbsa" "fpbs_fqup_trans" "fpbs_fqus_trans" "fpbs_ind" "fpbs_ind_dx" "fpbs_intro_alt" "fpbs_inv_alt" "fpbs_lleq_trans" "fpbs_lpxs_trans" "fpbs_refl" "fpbs_strap1" "fpbs_strap2" "fpbs_trans" "fpbsa" "fpbsa_inv_fpbs" "fqu" "fqu_bind_dx" "fqu_cpr_trans_dx" "fqu_cpr_trans_sn" "fqu_cpx_trans" "fqu_cpx_trans_neq" "fqu_cpxs_trans" "fqu_cpxs_trans_neq" "fqu_drop" "fqu_drop_lt" "fqu_flat_dx" "fqu_fqup" "fqu_fquq" "fqu_fwd_fw" "fqu_fwd_length_lref1" "fqu_fwd_length_lref1_aux" "fqu_inv_eq" "fqu_inv_eq_aux" "fqu_lpr_trans" "fqu_lpx_trans" "fqu_lref_O" "fqu_lref_S_lt" "fqu_pair_sn" "fqu_sta_trans" "fqu_wf_ind" "fqup_cpx_trans" "fqup_cpx_trans_neq" "fqup_cpxs_trans" "fqup_cpxs_trans_neq" "fqup_fpbg" "fqup_fpbs" "fquq" "fquq_bind_dx" "fquq_cpr_trans_dx" "fquq_cpr_trans_sn" "fquq_cpx_trans" "fquq_cpx_trans_neq" "fquq_cpxs_trans" "fquq_cpxs_trans_neq" "fquq_drop" "fquq_flat_dx" "fquq_fquqa" "fquq_fqus" "fquq_fwd_fw" "fquq_fwd_length_lref1" "fquq_fwd_length_lref1_aux" "fquq_inv_gen" "fquq_lpr_trans" "fquq_lpx_trans" "fquq_lref_O" "fquq_lstas_trans" "fquq_pair_sn" "fquq_refl" "fquq_sta_trans" "fquqa" "fquqa_drop" "fquqa_inv_fquq" "fquqa_refl" "fqus_cpx_trans" "fqus_cpx_trans_neq" "fqus_cpxs_trans" "fqus_cpxs_trans_neq" "fqus_fpbs" "fqus_fpbs_trans" "fqus_lpxs_fpbs" "fqus_lstas_trans" "fqus_strap1_fqu" "fqus_strap2_fqu" "frees" "frees_S" "frees_append" "frees_be" "frees_bind_dx" "frees_bind_dx_O" "frees_bind_sn" "frees_dec" "frees_eq" "frees_flat_dx" "frees_flat_sn" "frees_inv" "frees_inv_append" "frees_inv_append_aux" "frees_inv_bind" "frees_inv_bind_O" "frees_inv_flat" "frees_inv_gref" "frees_inv_lift_be" "frees_inv_lift_ge" "frees_inv_lref" "frees_inv_lref_free" "frees_inv_lref_ge" "frees_inv_lref_lt" "frees_inv_lref_skip" "frees_inv_sort" "frees_lift_ge" "frees_lref_be" "frees_lref_eq" "frees_lreq_conf" "frees_trans" "frees_weak" "fsb" "fsb_fpbs_trans" "fsb_fsba" "fsb_ind_alt" "fsb_ind_fpbg" "fsb_intro" "fsb_inv_csx" "fsba" "fsba_fpbs_trans" "fsba_ind_alt" "fsba_intro" "fsba_inv_fsb" "genv" "gget" "gget_dec" "gget_eq" "gget_gt" "gget_inv_eq" "gget_inv_gt" "gget_inv_lt" "gget_inv_lt_aux" "gget_lt" "gget_mono" "gget_total" "item0" "lcosx" "lcosx_O" "lcosx_drop_trans_lt" "lcosx_inv_pair" "lcosx_inv_succ" "lcosx_inv_succ_aux" "lcosx_pair" "lcosx_skip" "lcosx_sort" "length_inv_pos_dx" "length_inv_pos_dx_ltail" "length_inv_pos_sn" "length_inv_pos_sn_ltail" "length_inv_zero_dx" "length_inv_zero_sn" "lift_gref" "lift_inv_gref1" "lift_inv_gref1_aux" "lift_inv_gref2" "lift_inv_gref2_aux" "lift_inv_pair_xy_x" "lift_lref_ge_minus_eq" "lift_mono" "lift_simple_dx" "lift_simple_sn" "lift_total" "lifts_inv_gref1" "lifts_simple_dx" "lifts_simple_sn" "liftv_cons" "liftv_inv_cons1" "liftv_inv_cons1_aux" "liftv_inv_nil1" "liftv_inv_nil1_aux" "liftv_mono" "liftv_nil" "liftv_total" "lleq_cpx_trans" "lleq_cpxs_trans" "lleq_fpb_trans" "lleq_fpbs" "lleq_fpbs_trans" "lleq_fqu_trans" "lleq_fquq_trans" "lleq_gref" "lleq_llpx_sn_conf" "lleq_llpx_sn_trans" "lleq_lpx_trans" "lleq_lpxs_trans" "llor" "llor_atom" "llor_skip" "llor_tail_cofrees" "llor_tail_frees" "llor_total" "llpx_sn" "llpx_sn_TC_pair_dx" "llpx_sn_Y" "llpx_sn_alt" "llpx_sn_alt_inv_llpx_sn" "llpx_sn_alt_r" "llpx_sn_alt_r_bind" "llpx_sn_alt_r_flat" "llpx_sn_alt_r_free" "llpx_sn_alt_r_fwd_length" "llpx_sn_alt_r_fwd_lref" "llpx_sn_alt_r_gref" "llpx_sn_alt_r_ind_alt" "llpx_sn_alt_r_intro" "llpx_sn_alt_r_intro_alt" "llpx_sn_alt_r_inv_alt" "llpx_sn_alt_r_inv_bind" "llpx_sn_alt_r_inv_flat" "llpx_sn_alt_r_inv_lpx_sn" "llpx_sn_alt_r_lref" "llpx_sn_alt_r_skip" "llpx_sn_alt_r_sort" "llpx_sn_bind" "llpx_sn_bind_O" "llpx_sn_bind_repl_O" "llpx_sn_bind_repl_SO" "llpx_sn_co" "llpx_sn_dec" "llpx_sn_drop_conf_O" "llpx_sn_drop_trans_O" "llpx_sn_flat" "llpx_sn_free" "llpx_sn_frees_trans" "llpx_sn_frees_trans_aux" "llpx_sn_fwd_bind_O_dx" "llpx_sn_fwd_bind_dx" "llpx_sn_fwd_bind_sn" "llpx_sn_fwd_drop_dx" "llpx_sn_fwd_drop_sn" "llpx_sn_fwd_flat_dx" "llpx_sn_fwd_flat_sn" "llpx_sn_fwd_length" "llpx_sn_fwd_lref" "llpx_sn_fwd_lref_aux" "llpx_sn_fwd_lref_dx" "llpx_sn_fwd_lref_sn" "llpx_sn_fwd_pair_sn" "llpx_sn_ge" "llpx_sn_ge_up" "llpx_sn_gref" "llpx_sn_ind_alt_r" "llpx_sn_intro_alt_r" "llpx_sn_inv_S" "llpx_sn_inv_S_aux" "llpx_sn_inv_alt_r" "llpx_sn_inv_bind" "llpx_sn_inv_bind_O" "llpx_sn_inv_bind_aux" "llpx_sn_inv_flat" "llpx_sn_inv_flat_aux" "llpx_sn_inv_lift_O" "llpx_sn_inv_lift_be" "llpx_sn_inv_lift_ge" "llpx_sn_inv_lift_le" "llpx_sn_inv_lref_ge_bi" "llpx_sn_inv_lref_ge_dx" "llpx_sn_inv_lref_ge_sn" "llpx_sn_lift_ge" "llpx_sn_lift_le" "llpx_sn_llor_dx" "llpx_sn_llor_dx_sym" "llpx_sn_llor_fwd_sn" "llpx_sn_llpx_sn_alt" "llpx_sn_lpx_sn_alt_r" "llpx_sn_lref" "llpx_sn_lrefl" "llpx_sn_lreq_repl" "llpx_sn_lreq_trans" "llpx_sn_refl" "llpx_sn_skip" "llpx_sn_sort" "lpair_ltail" "lpr" "lpr_aaa_conf" "lpr_conf" "lpr_cpcs_conf" "lpr_cpcs_trans" "lpr_cpr_conf" "lpr_cpr_conf_dx" "lpr_cpr_conf_sn" "lpr_cpr_trans" "lpr_cprs_conf" "lpr_cprs_trans" "lpr_drop_conf" "lpr_drop_trans_O1" "lpr_fpb" "lpr_fpbq" "lpr_fwd_length" "lpr_inv_atom1" "lpr_inv_atom2" "lpr_inv_pair1" "lpr_inv_pair2" "lpr_lprs" "lpr_lpx" "lpr_pair" "lpr_refl" "lprs" "lprs_aaa_conf" "lprs_conf" "lprs_cpcs_trans" "lprs_cpr_conf_dx" "lprs_cpr_conf_sn" "lprs_cpr_trans" "lprs_cprs_conf" "lprs_cprs_conf_dx" "lprs_cprs_conf_sn" "lprs_cprs_trans" "lprs_drop_conf" "lprs_drop_trans_O1" "lprs_fpbs" "lprs_fwd_length" "lprs_ind" "lprs_ind_alt" "lprs_ind_dx" "lprs_inv_atom1" "lprs_inv_atom2" "lprs_inv_pair1" "lprs_inv_pair2" "lprs_lpxs" "lprs_pair" "lprs_pair_refl" "lprs_pair2" "lprs_refl" "lprs_strap1" "lprs_strap2" "lprs_strip" "lprs_trans" "lpx" "lpx_aaa_conf" "lpx_cpx_frees_trans" "lpx_cpx_trans" "lpx_cpxs_trans" "lpx_drop_conf" "lpx_drop_trans_O1" "lpx_fqu_trans" "lpx_fqup_trans" "lpx_fquq_trans" "lpx_fqus_trans" "lpx_frees_trans" "lpx_fwd_length" "lpx_inv_atom1" "lpx_inv_atom2" "lpx_inv_pair" "lpx_inv_pair1" "lpx_inv_pair2" "lpx_lleq_fqu_trans" "lpx_lleq_fqup_trans" "lpx_lleq_fquq_trans" "lpx_lleq_fqus_trans" "lpx_lpxs" "lpx_pair" "lpx_refl" "lpx_sn" "lpx_sn_LTC_TC_lpx_sn" "lpx_sn_alt" "lpx_sn_alt_atom" "lpx_sn_alt_fwd_length" "lpx_sn_alt_inv_atom1" "lpx_sn_alt_inv_atom2" "lpx_sn_alt_inv_lpx_sn" "lpx_sn_alt_inv_pair1" "lpx_sn_alt_inv_pair2" "lpx_sn_alt_pair" "lpx_sn_atom" "lpx_sn_conf" "lpx_sn_confluent" "lpx_sn_deliftable_dropable" "lpx_sn_drop_conf" "lpx_sn_drop_trans" "lpx_sn_dropable" "lpx_sn_dropable_aux" "lpx_sn_fwd_length" "lpx_sn_intro_alt" "lpx_sn_inv_alt" "lpx_sn_inv_atom1" "lpx_sn_inv_atom1_aux" "lpx_sn_inv_atom2" "lpx_sn_inv_atom2_aux" "lpx_sn_inv_pair" "lpx_sn_inv_pair1" "lpx_sn_inv_pair1_aux" "lpx_sn_inv_pair2" "lpx_sn_inv_pair2_aux" "lpx_sn_liftable_dedropable" "lpx_sn_llpx_sn" "lpx_sn_lpx_sn_alt" "lpx_sn_pair" "lpx_sn_refl" "lpx_sn_trans" "lpx_sn_transitive" "lpxs" "lpxs_aaa_conf" "lpxs_cpx_trans" "lpxs_cpxs_trans" "lpxs_drop_conf" "lpxs_drop_trans_O1" "lpxs_fpbg" "lpxs_fpbs" "lpxs_fpbs_trans" "lpxs_fqup_trans" "lpxs_fquq_trans" "lpxs_fqus_trans" "lpxs_fwd_length" "lpxs_ind" "lpxs_ind_alt" "lpxs_ind_dx" "lpxs_inv_atom1" "lpxs_inv_atom2" "lpxs_inv_pair1" "lpxs_inv_pair2" "lpxs_lleq_fpbs" "lpxs_lleq_fqu_trans" "lpxs_lleq_fqup_trans" "lpxs_lleq_fquq_trans" "lpxs_lleq_fqus_trans" "lpxs_nlleq_inv_step_sn" "lpxs_pair" "lpxs_pair_refl" "lpxs_pair2" "lpxs_refl" "lpxs_strap1" "lpxs_strap2" "lpxs_trans" "lreq_cpx_trans" "lreq_cpxs_trans" "lreq_drop_conf_be" "lreq_drop_trans_be" "lreq_frees_trans" "lreq_llpx_sn_trans" "lreq_lpx_trans_lleq" "lreq_lpx_trans_lleq_aux" "lreq_lpxs_trans_lleq" "lreq_lpxs_trans_lleq_aux" "lstas" "lstas_aaa_conf" "lstas_appl" "lstas_bind" "lstas_cast" "lstas_conf" "lstas_conf_le" "lstas_correct" "lstas_cpcs_lpr" "lstas_cpr" "lstas_cpr_aux" "lstas_cpr_lpr" "lstas_cpr_lpr_aux" "lstas_cprs_lpr" "lstas_cprs_lpr_aux" "lstas_cpxs" "lstas_da_conf" "lstas_fpbg" "lstas_fpbs" "lstas_inv_appl1" "lstas_inv_appl1_aux" "lstas_inv_bind1" "lstas_inv_bind1_aux" "lstas_inv_cast1" "lstas_inv_cast1_aux" "lstas_inv_da" "lstas_inv_da_ge" "lstas_inv_gref1" "lstas_inv_gref1_aux" "lstas_inv_lift1" "lstas_inv_lref1" "lstas_inv_lref1_O" "lstas_inv_lref1_S" "lstas_inv_lref1_aux" "lstas_inv_refl_pos" "lstas_inv_sort1" "lstas_inv_sort1_aux" "lstas_ldef" "lstas_lift" "lstas_llpx_sn_conf" "lstas_lstas" "lstas_mono" "lstas_scpds" "lstas_scpds_aux" "lstas_scpds_trans" "lstas_scpes_trans" "lstas_sort" "lstas_split" "lstas_split_aux" "lstas_succ" "lstas_trans" "lstas_zero" "lsubd_da_conf" "lsubd_da_trans" "lsubr_cpx_trans" "lsubr_cpxs_trans" "lsubsv_lstas_trans" "lsuby_cpy_trans" "lsuby_cpys_trans" "lsuby_cpysa_trans" "lsx_bind_lpxs_aux" "lsx_cpx_trans_O" "lsx_cpx_trans_lcosx" "lsx_flat_lpxs" "lsx_gref" "lsx_lpx_trans" "lsx_lpxs_trans" "lsx_lref_be_lpxs" "lsxa_intro_lpx" "lsxa_lpxs_trans" "nlift_bind_dx" "nlift_bind_sn" "nlift_flat_dx" "nlift_flat_sn" "nlift_inv_bind" "nlift_inv_flat" "nlift_inv_lref_be_SO" "nlift_lref_be_SO" "nllpx_sn_inv_bind" "nllpx_sn_inv_bind_O" "nllpx_sn_inv_flat" "rfw_lpair_dx" "rfw_lpair_sn" "scpds_cpr_lpr_aux" "scpds_fwd_cpxs" "scpds_inv_lstas_eq" "scpes_cpr_lpr_aux" "scpes_inv_lstas_eq" "sh_N" "simple" "simple_atom" "simple_flat" "simple_inv_bind" "simple_inv_bind_aux" "simple_inv_pair" "simple_tsts_repl_dx" "simple_tsts_repl_sn" "snv_cpr_lpr" "snv_cpr_lpr_aux" "snv_cprs_lpr" "snv_cprs_lpr_aux" "snv_fqu_conf" "snv_fquq_conf" "snv_fwd_da" "snv_fwd_fsb" "snv_fwd_lstas" "snv_inv_gref" "snv_inv_gref_aux" "snv_lstas" "snv_lstas_aux" "sta_cpx" "sta_cpx_aux" "sta_fpb" "sta_fpbg" "sta_fpbq" "sta_fpbs" "trr_inv_atom" "trx_inv_atom" "tsts_canc_dx" "tsts_canc_sn" "tsts_dec" "tsts_inv_atom2" "tsts_inv_atom2_aux" "tsts_inv_bind_applv_simple" "tsts_inv_pair2" "tsts_inv_pair2_aux" "tsts_sym")
)
(rel
(ver "2.1")
(old "1.1/A")
(new "aarity")
)
+ (rel
+ (ver "2.1")
+ (old "1.1/trans")
+ (new "at")
+ )
(rel
(ver "2.1")
(old "1.1/B")
(new "bind2")
)
+ (rel
+ (ver "2.1")
+ (old "1.1/nf2")
+ (new "cnr")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/nf2_abst")
+ (new "cnr_abst")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/nf2_dec")
+ (new "cnr_dec")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/nf2_gen_abbr")
+ (new "cnr_inv_abbr")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/nf2_gen_abst")
+ (new "cnr_inv_abst")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/nf2_lift")
+ (new "cnr_lift")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/nf2_lref_abst")
+ (new "cnr_lref_abst")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/nf2_csort_lref")
+ (new "cnr_lref_atom")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/nf2_sort")
+ (new "cnr_sort")
+ )
(rel
(ver "2.1")
(old "1.1/arity_sred_pr2")
(new "cpr_aaa_conf")
)
+ (rel
+ (ver "2.1")
+ (old "1.1/pr2_confluence")
+ (new "cpr_conf")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/pr2_gen_abbr")
+ (new "cpr_inv_abbr1")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/pr2_gen_abst")
+ (new "cpr_inv_abst1")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/pr2_gen_appl")
+ (new "cpr_inv_appl1")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/pr2_gen_cast")
+ (new "cpr_inv_cast1")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/pr2_gen_lift")
+ (new "cpr_inv_lift1")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/pr2_gen_lref")
+ (new "cpr_inv_lref1")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/pr2_gen_sort")
+ (new "cpr_inv_sort1")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/pr2_lift")
+ (new "cpr_lift")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/pr2_head_1")
+ (new "cpr_pair_sn")
+ )
(rel
(ver "2.1")
(old "1.1/arity_sred_pr3")
(new "cprs_aaa_conf")
)
+ (rel
+ (ver "2.1")
+ (old "1.1/thead_x_y_y")
+ (new "discr_tpair_xy_y")
+ )
(rel
(ver "2.1")
(old "1.1/drop")
(old "1.1/drop_drop")
(new "drop_drop")
)
+ (rel
+ (ver "2.1")
+ (old "1.1/drop_S")
+ (new "drop_fwd_drop2")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/drop_gen_refl")
+ (new "drop_inv_O2" "drop_inv_O2_aux")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/drop_gen_sort")
+ (new "drop_inv_atom1" "drop_inv_atom1_aux")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/drop_gen_drop")
+ (new "drop_inv_drop1_lt")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/drop_gen_skip_l")
+ (new "drop_inv_skip1" "drop_inv_skip1_aux")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/drop_gen_skip_r")
+ (new "drop_inv_skip2" "drop_inv_skip2_aux")
+ )
(rel
(ver "2.1")
(old "1.1/drop_mono")
)
(rel
(ver "2.1")
- (old "1.1/drop_skip")
+ (old "1.1/drop_skip_bind")
(new "drop_skip")
)
(rel
(old "1.1/drop_trans_le")
(new "drop_trans_le")
)
+ (rel
+ (ver "2.1")
+ (old "1.1/drop1_gen_pcons")
+ (new "drops_inv_cons" "drops_inv_cons_aux")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/drop1_gen_pnil")
+ (new "drops_inv_nil" "drops_inv_nil_aux")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/drop1_skip_bind")
+ (new "drops_skip")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/drop1_trans")
+ (new "drops_trans")
+ )
(rel
(ver "2.1")
(old "1.1/terms_props__bind_dec")
(old "1.1/F")
(new "flat2")
)
+ (rel
+ (ver "2.1")
+ (old "1.1/dnf_dec" "1.1/dnf_dec2")
+ (new "is_lift_dec")
+ )
(rel
(ver "2.1")
(old "1.1/K")
(old "1.1/C")
(new "lenv")
)
+ (rel
+ (ver "2.1")
+ (old "1.1/c_tail_ind")
+ (new "lenv_ind_alt")
+ )
(rel
(ver "2.1")
(old "1.1/lift")
(old "1.1/lift_bind")
(new "lift_bind")
)
+ (rel
+ (ver "2.1")
+ (old "1.1/lift_gen_lift")
+ (new "lift_div_le")
+ )
(rel
(ver "2.1")
(old "1.1/lift_flat")
(old "1.1/lift_inj")
(new "lift_inj")
)
+ (rel
+ (ver "2.1")
+ (old "1.1/lift_gen_bind")
+ (new "lift_inv_bind2" "lift_inv_bind2_aux")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/lift_gen_flat")
+ (new "lift_inv_flat2" "lift_inv_flat2_aux")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/lift_gen_lref")
+ (new "lift_inv_lref2" "lift_inv_lref2_aux")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/lift_gen_lref_false")
+ (new "lift_inv_lref2_be")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/lift_gen_lref_ge")
+ (new "lift_inv_lref2_ge")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/lift_gen_lref_lt")
+ (new "lift_inv_lref2_lt")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/thead_x_lift_y_y")
+ (new "lift_inv_pair_xy_y")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/lift_gen_sort")
+ (new "lift_inv_sort2" "lift_inv_sort2_aux")
+ )
(rel
(ver "2.1")
(old "1.1/lift_lref_ge")
(new "lift_lref_ge")
)
+ (rel
+ (ver "2.1")
+ (old "1.1/lift_lref_gt")
+ (new "lift_lref_ge_minus")
+ )
(rel
(ver "2.1")
(old "1.1/lift_lref_lt")
(new "lift_lref_lt")
)
+ (rel
+ (ver "2.1")
+ (old "1.1/lift_r")
+ (new "lift_refl")
+ )
(rel
(ver "2.1")
(old "1.1/lift_sort")
(new "lift_sort")
)
+ (rel
+ (ver "2.1")
+ (old "1.1/lift_free")
+ (new "lift_split" "lift_trans_be")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/lift_d")
+ (new "lift_trans_ge" "lift_trans_le")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/lifts1_flat")
+ (new "lifts_applv" "lifts_inv_applv1")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/lift1_bind")
+ (new "lifts_inv_bind1")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/lift1_flat")
+ (new "lifts_inv_flat1")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/lift1_lref")
+ (new "lifts_inv_lref1")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/lift1_sort")
+ (new "lifts_inv_sort1")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/lift1_free")
+ (new "lifts_lift_trans")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/lifts1_xhg")
+ (new "lifts_lift_trans_le" "liftsv_liftv_trans_le")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/lift1_lift1")
+ (new "lifts_trans")
+ )
(rel
(ver "2.1")
(old "1.1/lifts")
- (new "lifts")
+ (new "liftv")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/csuba")
+ (new "lsuba")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/csuba_arity_rev")
+ (new "lsuba_aaa_conf")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/csuba_arity")
+ (new "lsuba_aaa_trans")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/csuba_sort")
+ (new "lsuba_atom")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/csuba_abst")
+ (new "lsuba_beta")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/csuba_refl")
+ (new "lsuba_refl")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/csubc")
+ (new "lsubc")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/fweight")
+ (new "rfw")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/flt_shift")
+ (new "rfw_shift")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/flt_thead_dx")
+ (new "rfw_tpair_dx")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/flt_thead_sx")
+ (new "rfw_tpair_sn")
)
(rel
(ver "2.1")
(old "1.1/T")
(new "term")
)
+ (rel
+ (ver "2.1")
+ (old "1.1/pr2_free")
+ (new "tpr_cpr")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/iso")
+ (new "tsts")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/iso_lref" "1.1/iso_sort")
+ (new "tsts_atom")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/iso_gen_lref" "1.1/iso_gen_sort")
+ (new "tsts_inv_atom1" "tsts_inv_atom1_aux")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/iso_gen_head")
+ (new "tsts_inv_pair1" "tsts_inv_pair1_aux")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/iso_head")
+ (new "tsts_pair")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/iso_refl")
+ (new "tsts_refl")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/iso_trans")
+ (new "tsts_trans")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/tweight")
+ (new "tw")
+ )
+ (rel
+ (ver "2.1")
+ (old "1.1/tweight_lt")
+ (new "tw_pos")
+ )
)
(ver "2.1")
- (old "1.1/arity_nf2_inv_all" "1.1/arity_repellent" "1.1/c_tail_ind" "1.1/csuba" "1.1/csuba_abst" "1.1/csuba_arity" "1.1/csuba_arity_rev" "1.1/csuba_drop_abbr" "1.1/csuba_drop_abbr_rev" "1.1/csuba_drop_abst" "1.1/csuba_drop_abst_rev" "1.1/csuba_gen_abbr" "1.1/csuba_gen_abbr_rev" "1.1/csuba_gen_abst" "1.1/csuba_gen_abst_rev" "1.1/csuba_gen_bind" "1.1/csuba_gen_bind_rev" "1.1/csuba_gen_flat" "1.1/csuba_gen_flat_rev" "1.1/csuba_head" "1.1/csuba_refl" "1.1/csuba_sort" "1.1/csubc" "1.1/csubc_abst" "1.1/csubc_arity_conf" "1.1/csubc_arity_trans" "1.1/csubc_csuba" "1.1/csubc_drop_conf_O" "1.1/csubc_drop_conf_rev" "1.1/csubc_drop1_conf_rev" "1.1/csubc_gen_head_l" "1.1/csubc_gen_head_r" "1.1/csubc_gen_sort_l" "1.1/csubc_gen_sort_r" "1.1/csubc_head" "1.1/csubc_refl" "1.1/csubc_sort" "1.1/cweight" "1.1/dnf_dec" "1.1/dnf_dec2" "1.1/drop_S" "1.1/drop_conf_rev" "1.1/drop_csubc_trans" "1.1/drop_gen_drop" "1.1/drop_gen_refl" "1.1/drop_gen_skip_l" "1.1/drop_gen_skip_r" "1.1/drop_gen_sort" "1.1/drop_skip_bind" "1.1/drop_skip_flat" "1.1/drop1" "1.1/drop1_cons" "1.1/drop1_cons_tail" "1.1/drop1_csubc_trans" "1.1/drop1_gen_pcons" "1.1/drop1_gen_pnil" "1.1/drop1_nil" "1.1/drop1_skip_bind" "1.1/drop1_trans" "1.1/ex1_arity" "1.1/ex1_c" "1.1/ex1_t" "1.1/ex2_arity" "1.1/ex2_c" "1.1/ex2_nf2" "1.1/ex2_t" "1.1/flt" "1.1/flt_arith0" "1.1/flt_arith1" "1.1/flt_arith2" "1.1/flt_shift" "1.1/flt_thead_dx" "1.1/flt_thead_sx" "1.1/flt_trans" "1.1/flt_wf__q_ind" "1.1/flt_wf_ind" "1.1/fweight" "1.1/gz" "1.1/iso" "1.1/iso_flats_flat_bind_false" "1.1/iso_flats_lref_bind_false" "1.1/iso_gen_head" "1.1/iso_gen_lref" "1.1/iso_gen_sort" "1.1/iso_head" "1.1/iso_lref" "1.1/iso_refl" "1.1/iso_sort" "1.1/iso_trans" "1.1/lift_d" "1.1/lift_free" "1.1/lift_free_sym" "1.1/lift_gen_bind" "1.1/lift_gen_flat" "1.1/lift_gen_head" "1.1/lift_gen_lift" "1.1/lift_gen_lref" "1.1/lift_gen_lref_false" "1.1/lift_gen_lref_ge" "1.1/lift_gen_lref_lt" "1.1/lift_gen_sort" "1.1/lift_head" "1.1/lift_lref_gt" "1.1/lift_r" "1.1/lift1" "1.1/lift1_bind" "1.1/lift1_cons_tail" "1.1/lift1_flat" "1.1/lift1_free" "1.1/lift1_lift1" "1.1/lift1_lref" "1.1/lift1_sort" "1.1/lift1_xhg" "1.1/lifts_inj" "1.1/lifts_tapp" "1.1/lifts1" "1.1/lifts1_cons" "1.1/lifts1_flat" "1.1/lifts1_nil" "1.1/lifts1_xhg" "1.1/minus_s_s" "1.1/mk_G" "1.1/nf0_dec" "1.1/nf2" "1.1/nf2_abst" "1.1/nf2_abst_shift" "1.1/nf2_appl_lref" "1.1/nf2_appls_lref" "1.1/nf2_csort_lref" "1.1/nf2_dec" "1.1/nf2_gen__nf2_gen_aux" "1.1/nf2_gen_abbr" "1.1/nf2_gen_abst" "1.1/nf2_gen_beta" "1.1/nf2_gen_cast" "1.1/nf2_gen_flat" "1.1/nf2_gen_lref" "1.1/nf2_iso_appls_lref" "1.1/nf2_lift" "1.1/nf2_lift1" "1.1/nf2_lref_abst" "1.1/nf2_pr3_confluence" "1.1/nf2_pr3_unfold" "1.1/nf2_sn3" "1.1/nf2_sort" "1.1/not_abbr_abst" "1.1/pc3" "1.1/pc3_abst_dec" "1.1/pc3_dec" "1.1/pc3_eta" "1.1/pc3_gen_abst" "1.1/pc3_gen_abst_shift" "1.1/pc3_gen_appls_lref_abst" "1.1/pc3_gen_appls_lref_sort" "1.1/pc3_gen_appls_sort_abst" "1.1/pc3_gen_cabbr" "1.1/pc3_gen_lift" "1.1/pc3_gen_lift_abst" "1.1/pc3_gen_not_abst" "1.1/pc3_gen_sort" "1.1/pc3_gen_sort_abst" "1.1/pc3_head_1" "1.1/pc3_head_12" "1.1/pc3_head_2" "1.1/pc3_head_21" "1.1/pc3_ind_left" "1.1/pc3_ind_left__pc3_left_pc3" "1.1/pc3_ind_left__pc3_left_pr3" "1.1/pc3_ind_left__pc3_left_sym" "1.1/pc3_ind_left__pc3_left_trans" "1.1/pc3_ind_left__pc3_pc3_left" "1.1/pc3_left" "1.1/pc3_left_r" "1.1/pc3_left_ur" "1.1/pc3_left_ux" "1.1/pc3_lift" "1.1/pc3_nf2" "1.1/pc3_nf2_unfold" "1.1/pc3_pr2_pr2_t" "1.1/pc3_pr2_pr3_t" "1.1/pc3_pr2_r" "1.1/pc3_pr2_u" "1.1/pc3_pr2_u2" "1.1/pc3_pr2_x" "1.1/pc3_pr3_conf" "1.1/pc3_pr3_pc3_t" "1.1/pc3_pr3_r" "1.1/pc3_pr3_t" "1.1/pc3_pr3_x" "1.1/pc3_refl" "1.1/pc3_s" "1.1/pc3_t" "1.1/pc3_thin_dx" "1.1/pr2" "1.1/pr2_cflat" "1.1/pr2_change" "1.1/pr2_confluence" "1.1/pr2_confluence__pr2_delta_delta" "1.1/pr2_confluence__pr2_free_delta" "1.1/pr2_confluence__pr2_free_free" "1.1/pr2_delta" "1.1/pr2_delta1" "1.1/pr2_free" "1.1/pr2_gen_abbr" "1.1/pr2_gen_abst" "1.1/pr2_gen_appl" "1.1/pr2_gen_cabbr" "1.1/pr2_gen_cast" "1.1/pr2_gen_cbind" "1.1/pr2_gen_cflat" "1.1/pr2_gen_csort" "1.1/pr2_gen_lift" "1.1/pr2_gen_lref" "1.1/pr2_gen_sort" "1.1/pr2_head_1" "1.1/pr2_head_2" "1.1/pr2_lift" "1.1/pr2_subst1" "1.1/pr2_thin_dx" "1.1/pr3" "1.1/pr3_cflat" "1.1/pr3_confluence" "1.1/pr3_eta" "1.1/pr3_flat" "1.1/pr3_gen_abbr" "1.1/pr3_gen_abst" "1.1/pr3_gen_appl" "1.1/pr3_gen_bind" "1.1/pr3_gen_cabbr" "1.1/pr3_gen_cast" "1.1/pr3_gen_lift" "1.1/pr3_gen_lref" "1.1/pr3_gen_sort" "1.1/pr3_head_1" "1.1/pr3_head_12" "1.1/pr3_head_2" "1.1/pr3_head_21" "1.1/pr3_iso_appl_bind" "1.1/pr3_iso_appls_abbr" "1.1/pr3_iso_appls_appl_bind" "1.1/pr3_iso_appls_beta" "1.1/pr3_iso_appls_bind" "1.1/pr3_iso_appls_cast" "1.1/pr3_iso_beta" "1.1/pr3_lift" "1.1/pr3_pr2" "1.1/pr3_pr2_pr2_t" "1.1/pr3_pr2_pr3_t" "1.1/pr3_pr3_pr3_t" "1.1/pr3_refl" "1.1/pr3_sing" "1.1/pr3_strip" "1.1/pr3_subst1" "1.1/pr3_t" "1.1/pr3_thin_dx" "1.1/ptrans" "1.1/r" "1.1/s" "1.1/sc3" "1.1/sc3_abbr" "1.1/sc3_abst" "1.1/sc3_appl" "1.1/sc3_arity" "1.1/sc3_arity_csubc" "1.1/sc3_arity_gen" "1.1/sc3_bind" "1.1/sc3_cast" "1.1/sc3_lift" "1.1/sc3_lift1" "1.1/sc3_props__sc3_sn3_abst" "1.1/sc3_repl" "1.1/sc3_sn3" "1.1/sn3" "1.1/sn3_abbr" "1.1/sn3_appl_abbr" "1.1/sn3_appl_appl" "1.1/sn3_appl_appls" "1.1/sn3_appl_beta" "1.1/sn3_appl_bind" "1.1/sn3_appl_cast" "1.1/sn3_appl_lref" "1.1/sn3_appls_abbr" "1.1/sn3_appls_beta" "1.1/sn3_appls_bind" "1.1/sn3_appls_cast" "1.1/sn3_appls_lref" "1.1/sn3_beta" "1.1/sn3_bind" "1.1/sn3_cast" "1.1/sn3_cdelta" "1.1/sn3_cflat" "1.1/sn3_change" "1.1/sn3_cpr3_trans" "1.1/sn3_gen_bind" "1.1/sn3_gen_cflat" "1.1/sn3_gen_def" "1.1/sn3_gen_flat" "1.1/sn3_gen_head" "1.1/sn3_gen_lift" "1.1/sn3_lift" "1.1/sn3_nf2" "1.1/sn3_pr2_intro" "1.1/sn3_pr3_trans" "1.1/sn3_shift" "1.1/sn3_sing" "1.1/sns3" "1.1/sns3_lifts" "1.1/sns3_lifts1" "1.1/sty1" "1.1/sty1_abbr" "1.1/sty1_appl" "1.1/sty1_bind" "1.1/sty1_cast2" "1.1/sty1_correct" "1.1/sty1_lift" "1.1/sty1_sing" "1.1/sty1_trans" "1.1/subst1" "1.1/subst1_confluence_eq" "1.1/subst1_confluence_lift" "1.1/subst1_confluence_neq" "1.1/subst1_ex" "1.1/subst1_gen_head" "1.1/subst1_gen_lift_eq" "1.1/subst1_gen_lift_ge" "1.1/subst1_gen_lift_lt" "1.1/subst1_gen_lref" "1.1/subst1_gen_sort" "1.1/subst1_head" "1.1/subst1_lift_S" "1.1/subst1_lift_ge" "1.1/subst1_lift_lt" "1.1/subst1_refl" "1.1/subst1_single" "1.1/subst1_subst1" "1.1/subst1_subst1_back" "1.1/subst1_trans" "1.1/thead_x_lift_y_y" "1.1/thead_x_y_y" "1.1/trans" "1.1/tweight" "1.1/tweight_lt")
- (new "aaa_csx" "aaa_da" "aaa_fqu_conf" "aaa_fqup_conf" "aaa_fquq_conf" "aaa_fqus_conf" "aaa_fsb" "aaa_fsba" "aaa_ind_csx" "aaa_ind_csx_alt" "aaa_ind_csx_alt_aux" "aaa_ind_csx_aux" "aaa_ind_fpb" "aaa_ind_fpb_aux" "aaa_ind_fpbg" "aaa_ind_fpbg_aux" "aaa_lleq_conf" "aaa_lstas" "acr" "acr_aaa" "acr_aaa_csubc_lifts" "acr_abst" "acr_gcr" "append" "append_assoc" "append_atom_sn" "append_inj_dx" "append_inj_sn" "append_inv_pair_dx" "append_inv_refl_dx" "append_length" "at" "at_ge" "at_inv_cons" "at_inv_cons_aux" "at_inv_cons_ge" "at_inv_cons_lt" "at_inv_nil" "at_inv_nil_aux" "at_lt" "at_mono" "at_nil" "candidate" "ceq" "cfun" "cir" "cir_appl" "cir_cnr" "cir_ib2" "cir_inv_appl" "cir_inv_bind" "cir_inv_delta" "cir_inv_flat" "cir_inv_ib2" "cir_inv_lift" "cir_inv_ri2" "cir_lift" "cir_sort" "cix" "cix_appl" "cix_cnx" "cix_ib2" "cix_inv_appl" "cix_inv_bind" "cix_inv_cir" "cix_inv_delta" "cix_inv_flat" "cix_inv_ib2" "cix_inv_lift" "cix_inv_ri2" "cix_inv_sort" "cix_lift" "cix_lref" "cix_sort" "cnr" "cnr_abst" "cnr_dec" "cnr_inv_abbr" "cnr_inv_abst" "cnr_inv_appl" "cnr_inv_cir" "cnr_inv_crr" "cnr_inv_delta" "cnr_inv_eps" "cnr_inv_lift" "cnr_inv_zeta" "cnr_lift" "cnr_lref_abst" "cnr_lref_atom" "cnr_lref_free" "cnr_sort" "cnx" "cnx_abst" "cnx_csx" "cnx_dec" "cnx_fwd_cnr" "cnx_inv_abbr" "cnx_inv_abst" "cnx_inv_appl" "cnx_inv_cix" "cnx_inv_crx" "cnx_inv_delta" "cnx_inv_eps" "cnx_inv_lift" "cnx_inv_sort" "cnx_inv_zeta" "cnx_lift" "cnx_lref_atom" "cnx_lref_free" "cnx_sort" "cnx_sort_iter" "cpc" "cpc_conf" "cpc_cpcs" "cpc_fwd_cpr" "cpc_refl" "cpc_sym" "cpcs" "cpcs_aaa_mono" "cpcs_bind_dx" "cpcs_bind_sn" "cpcs_bind1" "cpcs_bind2" "cpcs_canc_dx" "cpcs_canc_sn" "cpcs_cpr_conf" "cpcs_cpr_div" "cpcs_cpr_strap1" "cpcs_cpr_strap2" "cpcs_cprs_conf" "cpcs_cprs_div" "cpcs_cprs_dx" "cpcs_cprs_sn" "cpcs_cprs_strap1" "cpcs_cprs_strap2" "cpcs_flat" "cpcs_flat_dx_cpr_rev" "cpcs_ind" "cpcs_ind_dx" "cpcs_inv_abst_dx" "cpcs_inv_abst_sn" "cpcs_inv_abst1" "cpcs_inv_abst2" "cpcs_inv_cprs" "cpcs_inv_lift" "cpcs_inv_sort" "cpcs_inv_sort_abst" "cpcs_lift" "cpcs_refl" "cpcs_scpes" "cpcs_strap1" "cpcs_strap2" "cpcs_strip" "cpcs_sym" "cpcs_trans" "cpr" "cpr_ApplOmega_12" "cpr_ApplOmega_23" "cpr_Omega_12" "cpr_Omega_21" "cpr_atom" "cpr_beta" "cpr_bind" "cpr_bind2" "cpr_conf" "cpr_conf_lpr" "cpr_conf_lpr_atom_atom" "cpr_conf_lpr_atom_delta" "cpr_conf_lpr_beta_beta" "cpr_conf_lpr_bind_bind" "cpr_conf_lpr_bind_zeta" "cpr_conf_lpr_delta_delta" "cpr_conf_lpr_eps_eps" "cpr_conf_lpr_flat_beta" "cpr_conf_lpr_flat_eps" "cpr_conf_lpr_flat_flat" "cpr_conf_lpr_flat_theta" "cpr_conf_lpr_theta_theta" "cpr_conf_lpr_zeta_zeta" "cpr_cpcs_dx" "cpr_cpcs_sn" "cpr_cprs" "cpr_cprs_conf_cpcs" "cpr_cprs_div" "cpr_cpx" "cpr_delift" "cpr_delta" "cpr_div" "cpr_eps" "cpr_flat" "cpr_fpb" "cpr_fpbq" "cpr_fwd_bind1_minus" "cpr_fwd_cir" "cpr_inv_abbr1" "cpr_inv_abst1" "cpr_inv_appl1" "cpr_inv_atom1" "cpr_inv_atom1_aux" "cpr_inv_bind1" "cpr_inv_bind1_aux" "cpr_inv_cast1" "cpr_inv_flat1" "cpr_inv_flat1_aux" "cpr_inv_lift1" "cpr_inv_lref1" "cpr_inv_sort1" "cpr_lift" "cpr_lpr_fpbs" "cpr_lpr_sta_fpbs" "cpr_pair_sn" "cpr_refl" "cpr_theta" "cpr_zeta" "cpre" "cpre_mono" "cprs" "cprs_beta" "cprs_beta_dx" "cprs_beta_rc" "cprs_bind" "cprs_bind_dx" "cprs_bind2" "cprs_bind2_dx" "cprs_conf" "cprs_conf_cpcs" "cprs_cpr_conf_cpcs" "cprs_cpr_div" "cprs_cpxs" "cprs_delta" "cprs_div" "cprs_eps" "cprs_flat" "cprs_flat_dx" "cprs_flat_sn" "cprs_fpbs" "cprs_ind" "cprs_ind_dx" "cprs_inv_abbr1" "cprs_inv_abst" "cprs_inv_abst1" "cprs_inv_appl1" "cprs_inv_cast1" "cprs_inv_cnr1" "cprs_inv_lift1" "cprs_inv_lref1" "cprs_inv_sort1" "cprs_lift" "cprs_lpr_conf_dx" "cprs_lpr_conf_sn" "cprs_refl" "cprs_scpds_div" "cprs_strap1" "cprs_strap2" "cprs_strip" "cprs_theta" "cprs_theta_dx" "cprs_theta_rc" "cprs_trans" "cprs_zeta" "cpx" "cpx_aaa_conf" "cpx_atom" "cpx_beta" "cpx_bind" "cpx_bind2" "cpx_cpxs" "cpx_ct" "cpx_delift" "cpx_delta" "cpx_eps" "cpx_flat" "cpx_frees_trans" "cpx_fwd_bind1_minus" "cpx_fwd_cix" "cpx_inv_abbr1" "cpx_inv_abst1" "cpx_inv_appl1" "cpx_inv_atom1" "cpx_inv_atom1_aux" "cpx_inv_bind1" "cpx_inv_bind1_aux" "cpx_inv_cast1" "cpx_inv_flat1" "cpx_inv_flat1_aux" "cpx_inv_lift1" "cpx_inv_lref1" "cpx_inv_lref1_ge" "cpx_inv_sort1" "cpx_lift" "cpx_lleq_conf" "cpx_lleq_conf_dx" "cpx_lleq_conf_sn" "cpx_lpx_aaa_conf" "cpx_pair_sn" "cpx_refl" "cpx_st" "cpx_theta" "cpx_zeta" "cpxe" "cpxs" "cpxs_ApplOmega_13" "cpxs_aaa_conf" "cpxs_beta" "cpxs_beta_dx" "cpxs_beta_rc" "cpxs_bind" "cpxs_bind_dx" "cpxs_bind2" "cpxs_bind2_dx" "cpxs_ct" "cpxs_delta" "cpxs_eps" "cpxs_flat" "cpxs_flat_dx" "cpxs_flat_sn" "cpxs_fpbg" "cpxs_fpbs" "cpxs_fpbs_trans" "cpxs_fqup_fpbs" "cpxs_fqus_fpbs" "cpxs_fqus_lpxs_fpbs" "cpxs_fwd_beta" "cpxs_fwd_beta_vector" "cpxs_fwd_cast" "cpxs_fwd_cast_vector" "cpxs_fwd_cnx" "cpxs_fwd_cnx_vector" "cpxs_fwd_delta" "cpxs_fwd_delta_vector" "cpxs_fwd_sort" "cpxs_fwd_sort_vector" "cpxs_fwd_theta" "cpxs_fwd_theta_vector" "cpxs_ind" "cpxs_ind_dx" "cpxs_inv_abbr1" "cpxs_inv_abst1" "cpxs_inv_appl1" "cpxs_inv_cast1" "cpxs_inv_cnx1" "cpxs_inv_lift1" "cpxs_inv_lref1" "cpxs_inv_sort1" "cpxs_lift" "cpxs_lleq_conf" "cpxs_lleq_conf_dx" "cpxs_lleq_conf_sn" "cpxs_neq_inv_step_sn" "cpxs_pair_sn" "cpxs_refl" "cpxs_sort" "cpxs_strap1" "cpxs_strap2" "cpxs_theta" "cpxs_theta_dx" "cpxs_theta_rc" "cpxs_trans" "cpxs_zeta" "cpy" "cpy_atom" "cpy_bind" "cpy_conf_eq" "cpy_conf_neq" "cpy_cpys" "cpy_flat" "cpy_full" "cpy_fwd_nlift2_ge" "cpy_fwd_tw" "cpy_fwd_up" "cpy_inv_atom1" "cpy_inv_atom1_aux" "cpy_inv_bind1" "cpy_inv_bind1_aux" "cpy_inv_flat1" "cpy_inv_flat1_aux" "cpy_inv_lift1_be" "cpy_inv_lift1_be_up" "cpy_inv_lift1_eq" "cpy_inv_lift1_ge" "cpy_inv_lift1_ge_up" "cpy_inv_lift1_le" "cpy_inv_lift1_le_up" "cpy_inv_lref1" "cpy_inv_refl_O2" "cpy_inv_refl_O2_aux" "cpy_inv_sort1" "cpy_lift_be" "cpy_lift_ge" "cpy_lift_le" "cpy_refl" "cpy_split_down" "cpy_split_up" "cpy_subst" "cpy_trans_down" "cpy_trans_ge" "cpy_weak" "cpy_weak_full" "cpy_weak_top" "cpys" "cpys_antisym_eq" "cpys_bind" "cpys_conf_eq" "cpys_conf_neq" "cpys_cpysa" "cpys_flat" "cpys_fwd_tw" "cpys_fwd_up" "cpys_ind" "cpys_ind_alt" "cpys_ind_dx" "cpys_inv_SO2" "cpys_inv_atom1" "cpys_inv_bind1" "cpys_inv_flat1" "cpys_inv_lift1_be" "cpys_inv_lift1_be_up" "cpys_inv_lift1_eq" "cpys_inv_lift1_ge" "cpys_inv_lift1_ge_up" "cpys_inv_lift1_le" "cpys_inv_lift1_le_up" "cpys_inv_lift1_subst" "cpys_inv_lift1_up" "cpys_inv_lref1" "cpys_inv_lref1_Y2" "cpys_inv_lref1_drop" "cpys_inv_refl_O2" "cpys_inv_sort1" "cpys_lift_be" "cpys_lift_ge" "cpys_lift_le" "cpys_refl" "cpys_split_up" "cpys_strap1" "cpys_strap1_down" "cpys_strap2" "cpys_strap2_down" "cpys_strip_eq" "cpys_strip_neq" "cpys_subst" "cpys_subst_Y2" "cpys_trans_down" "cpys_trans_eq" "cpys_weak" "cpys_weak_full" "cpys_weak_top" "cpysa" "cpysa_atom" "cpysa_bind" "cpysa_cpy_trans" "cpysa_flat" "cpysa_inv_cpys" "cpysa_refl" "cpysa_subst" "crr" "crr_appl_dx" "crr_appl_sn" "crr_beta" "crr_crx" "crr_delta" "crr_ib2_dx" "crr_ib2_sn" "crr_inv_appl" "crr_inv_appl_aux" "crr_inv_ib2" "crr_inv_ib2_aux" "crr_inv_lift" "crr_inv_lref" "crr_inv_lref_aux" "crr_inv_sort" "crr_inv_sort_aux" "crr_lift" "crr_ri2" "crr_theta" "crx" "crx_appl_dx" "crx_appl_sn" "crx_beta" "crx_delta" "crx_ib2_dx" "crx_ib2_sn" "crx_inv_appl" "crx_inv_appl_aux" "crx_inv_ib2" "crx_inv_ib2_aux" "crx_inv_lift" "crx_inv_lref" "crx_inv_lref_aux" "crx_inv_sort" "crx_inv_sort_aux" "crx_lift" "crx_ri2" "crx_sort" "crx_theta" "csx" "csx_abbr" "csx_abst" "csx_appl_beta" "csx_appl_beta_aux" "csx_appl_theta" "csx_appl_theta_aux" "csx_cast" "csx_cpre" "csx_cpx_trans" "csx_cpxe" "csx_cpxs_trans" "csx_csxa" "csx_fpb_conf" "csx_fpbs_conf" "csx_fqu_conf" "csx_fqup_conf" "csx_fquq_conf" "csx_fqus_conf" "csx_fsb" "csx_fsb_fpbs" "csx_fwd_bind" "csx_fwd_bind_dx" "csx_fwd_bind_dx_aux" "csx_fwd_flat" "csx_fwd_flat_dx" "csx_fwd_flat_dx_aux" "csx_fwd_pair_sn" "csx_fwd_pair_sn_aux" "csx_gcp" "csx_gcr" "csx_ind" "csx_ind_alt" "csx_ind_fpb" "csx_ind_fpbg" "csx_intro" "csx_intro_cpxs" "csx_inv_lift" "csx_inv_lref_bind" "csx_lift" "csx_lleq_conf" "csx_lleq_trans" "csx_lpx_conf" "csx_lpxs_conf" "csx_lref_bind" "csx_lsx" "csx_sort" "csxa" "csxa_cpxs_trans" "csxa_csx" "csxa_ind" "csxa_intro" "csxa_intro_aux" "csxa_intro_cpx" "csxv" "csxv_inv_cons" "d_appendable_sn" "d_deliftable_sn" "d_deliftable_sn_LTC" "d_deliftable_sn_llstar" "d_liftable" "d_liftable_LTC" "d_liftable_llstar" "d_liftable1" "d_liftables1" "d_liftables1_all" "d1_liftable_liftables" "d1_liftables_liftables_all" "da" "da_bind" "da_cpr_lpr" "da_cpr_lpr_aux" "da_cprs_lpr" "da_cprs_lpr_aux" "da_flat" "da_inv_bind" "da_inv_bind_aux" "da_inv_flat" "da_inv_flat_aux" "da_inv_lift" "da_inv_lref" "da_inv_lref_aux" "da_inv_sort" "da_inv_sort_aux" "da_ldec" "da_ldef" "da_lift" "da_lstas" "da_mono" "da_scpds_lpr_aux" "da_scpes_aux" "da_sort" "dedropable_sn" "dedropable_sn_TC" "deg_O" "deg_SO" "deg_SO_gt" "deg_SO_inv_pos" "deg_SO_inv_pos_aux" "deg_SO_pos" "deg_SO_refl" "deg_SO_zero" "deg_inv_prec" "deg_inv_pred" "deg_iter" "deg_next_SO" "destruct_apair_apair_aux" "destruct_lpair_lpair_aux" "destruct_sort_sort_aux" "destruct_tatom_tatom_aux" "destruct_tpair_tpair_aux" "discr_apair_xy_x" "discr_apair_xy_y" "discr_lpair_x_xy" "discr_tpair_xy_x" "discr_tpair_xy_y" "drop_FT" "drop_O1_append_sn_le" "drop_O1_append_sn_le_aux" "drop_O1_eq" "drop_O1_ex" "drop_O1_ge" "drop_O1_inj" "drop_O1_inv_append1_ge" "drop_O1_inv_append1_le" "drop_O1_le" "drop_O1_lt" "drop_O1_pair" "drop_T" "drop_atom" "drop_conf_be" "drop_conf_div" "drop_conf_le" "drop_drop_lt" "drop_fwd_be" "drop_fwd_drop2" "drop_fwd_length" "drop_fwd_length_eq1" "drop_fwd_length_eq2" "drop_fwd_length_ge" "drop_fwd_length_le_ge" "drop_fwd_length_le_le" "drop_fwd_length_le2" "drop_fwd_length_le4" "drop_fwd_length_lt2" "drop_fwd_length_lt4" "drop_fwd_length_minus2" "drop_fwd_length_minus4" "drop_fwd_lw" "drop_fwd_lw_lt" "drop_fwd_rfw" "drop_gen" "drop_inv_FT" "drop_inv_FT_aux" "drop_inv_O1_gt" "drop_inv_O1_pair1" "drop_inv_O1_pair1_aux" "drop_inv_O1_pair2" "drop_inv_O2" "drop_inv_O2_aux" "drop_inv_T" "drop_inv_atom1" "drop_inv_atom1_aux" "drop_inv_drop1" "drop_inv_drop1_lt" "drop_inv_gen" "drop_inv_length_eq" "drop_inv_pair1" "drop_inv_refl" "drop_inv_skip1" "drop_inv_skip1_aux" "drop_inv_skip2" "drop_inv_skip2_aux" "drop_lpr_trans" "drop_lprs_trans" "drop_lpx_trans" "drop_lpxs_trans" "drop_lsubc_trans" "drop_pair" "drop_refl_atom_O2" "drop_skip_lt" "drop_split" "drop_trans_ge_comm" "drop_trans_lt" "dropable_dx" "dropable_dx_TC" "dropable_sn" "dropable_sn_TC" "drops" "drops_cons" "drops_drop_trans" "drops_inv_cons" "drops_inv_cons_aux" "drops_inv_nil" "drops_inv_nil_aux" "drops_inv_skip2" "drops_lsubc_trans" "drops_nil" "drops_skip" "drops_trans" "eq_aarity_dec" "eq_false_inv_tpair_dx" "eq_false_inv_tpair_sn" "eq_item0_dec" "eq_lenv_dec" "fleq" "fleq_canc_dx" "fleq_canc_sn" "fleq_fpb_trans" "fleq_fpbg_trans" "fleq_fpbq" "fleq_fpbs" "fleq_intro" "fleq_inv_gen" "fleq_refl" "fleq_sym" "fleq_trans" "fpb" "fpb_cpx" "fpb_fpbg" "fpb_fpbg_trans" "fpb_fpbq" "fpb_fpbq_alt" "fpb_fpbs" "fpb_fpbsa_trans" "fpb_fqu" "fpb_inv_fleq" "fpb_lpx" "fpbg" "fpbg_fleq_trans" "fpbg_fpbq_trans" "fpbg_fpbs_trans" "fpbg_fwd_fpbs" "fpbg_refl" "fpbg_trans" "fpbq" "fpbq_aaa_conf" "fpbq_cpx" "fpbq_fpbg_trans" "fpbq_fpbqa" "fpbq_fpbs" "fpbq_fquq" "fpbq_ind_alt" "fpbq_inv_fpb_alt" "fpbq_lleq" "fpbq_lpx" "fpbq_refl" "fpbqa" "fpbqa_inv_fpbq" "fpbs" "fpbs_aaa_conf" "fpbs_cpx_trans_neq" "fpbs_cpxs_trans" "fpbs_fpb_trans" "fpbs_fpbg" "fpbs_fpbg_trans" "fpbs_fpbsa" "fpbs_fqup_trans" "fpbs_fqus_trans" "fpbs_ind" "fpbs_ind_dx" "fpbs_intro_alt" "fpbs_inv_alt" "fpbs_lleq_trans" "fpbs_lpxs_trans" "fpbs_refl" "fpbs_strap1" "fpbs_strap2" "fpbs_trans" "fpbsa" "fpbsa_inv_fpbs" "fqu" "fqu_bind_dx" "fqu_cpr_trans_dx" "fqu_cpr_trans_sn" "fqu_cpx_trans" "fqu_cpx_trans_neq" "fqu_cpxs_trans" "fqu_cpxs_trans_neq" "fqu_drop" "fqu_drop_lt" "fqu_flat_dx" "fqu_fqup" "fqu_fquq" "fqu_fwd_fw" "fqu_fwd_length_lref1" "fqu_fwd_length_lref1_aux" "fqu_inv_eq" "fqu_inv_eq_aux" "fqu_lpr_trans" "fqu_lpx_trans" "fqu_lref_O" "fqu_lref_S_lt" "fqu_pair_sn" "fqu_sta_trans" "fqu_wf_ind" "fqup" "fqup_ApplOmega_13" "fqup_bind_dx" "fqup_bind_dx_flat_dx" "fqup_cpx_trans" "fqup_cpx_trans_neq" "fqup_cpxs_trans" "fqup_cpxs_trans_neq" "fqup_drop" "fqup_flat_dx" "fqup_flat_dx_bind_dx" "fqup_flat_dx_pair_sn" "fqup_fpbg" "fqup_fpbs" "fqup_fqus" "fqup_fqus_trans" "fqup_fwd_fw" "fqup_ind" "fqup_ind_dx" "fqup_inv_step_sn" "fqup_lref" "fqup_pair_sn" "fqup_strap1" "fqup_strap2" "fqup_trans" "fqup_wf_ind" "fqup_wf_ind_eq" "fquq" "fquq_bind_dx" "fquq_cpr_trans_dx" "fquq_cpr_trans_sn" "fquq_cpx_trans" "fquq_cpx_trans_neq" "fquq_cpxs_trans" "fquq_cpxs_trans_neq" "fquq_drop" "fquq_flat_dx" "fquq_fquqa" "fquq_fqus" "fquq_fwd_fw" "fquq_fwd_length_lref1" "fquq_fwd_length_lref1_aux" "fquq_inv_gen" "fquq_lpr_trans" "fquq_lpx_trans" "fquq_lref_O" "fquq_lstas_trans" "fquq_pair_sn" "fquq_refl" "fquq_sta_trans" "fquqa" "fquqa_drop" "fquqa_inv_fquq" "fquqa_refl" "fqus" "fqus_cpx_trans" "fqus_cpx_trans_neq" "fqus_cpxs_trans" "fqus_cpxs_trans_neq" "fqus_drop" "fqus_fpbs" "fqus_fpbs_trans" "fqus_fqup_trans" "fqus_fwd_fw" "fqus_ind" "fqus_ind_dx" "fqus_inv_gen" "fqus_lpxs_fpbs" "fqus_lstas_trans" "fqus_refl" "fqus_strap1" "fqus_strap1_fqu" "fqus_strap2" "fqus_strap2_fqu" "fqus_trans" "frees" "frees_S" "frees_append" "frees_be" "frees_bind_dx" "frees_bind_dx_O" "frees_bind_sn" "frees_dec" "frees_eq" "frees_flat_dx" "frees_flat_sn" "frees_inv" "frees_inv_append" "frees_inv_append_aux" "frees_inv_bind" "frees_inv_bind_O" "frees_inv_flat" "frees_inv_lift_be" "frees_inv_lift_ge" "frees_inv_lref" "frees_inv_lref_free" "frees_inv_lref_ge" "frees_inv_lref_lt" "frees_inv_lref_skip" "frees_inv_sort" "frees_lift_ge" "frees_lref_be" "frees_lref_eq" "frees_lreq_conf" "frees_trans" "frees_weak" "fsb" "fsb_fpbs_trans" "fsb_fsba" "fsb_ind_alt" "fsb_ind_fpbg" "fsb_intro" "fsb_inv_csx" "fsba" "fsba_fpbs_trans" "fsba_ind_alt" "fsba_intro" "fsba_inv_fsb" "fw" "fw_lpair_sn" "fw_shift" "fw_tpair_dx" "fw_tpair_sn" "gcp" "gcp0_lifts" "gcp2_lifts" "gcp2_lifts_all" "gcr" "gcr_aaa" "gcr_lift" "gcr_lifts" "gget" "gget_dec" "gget_eq" "gget_gt" "gget_inv_eq" "gget_inv_gt" "gget_inv_lt" "gget_inv_lt_aux" "gget_lt" "gget_mono" "gget_total" "ib2" "is_lift_dec" "lcosx" "lcosx_O" "lcosx_drop_trans_lt" "lcosx_inv_pair" "lcosx_inv_succ" "lcosx_inv_succ_aux" "lcosx_pair" "lcosx_skip" "lcosx_sort" "lenv_ind_alt" "lift_conf_O1" "lift_conf_be" "lift_div_be" "lift_div_le" "lift_fwd_pair1" "lift_fwd_pair2" "lift_fwd_tw" "lift_inv_O2" "lift_inv_O2_aux" "lift_inv_bind1" "lift_inv_bind1_aux" "lift_inv_bind2" "lift_inv_bind2_aux" "lift_inv_flat1" "lift_inv_flat1_aux" "lift_inv_flat2" "lift_inv_flat2_aux" "lift_inv_lref1" "lift_inv_lref1_aux" "lift_inv_lref1_ge" "lift_inv_lref1_lt" "lift_inv_lref2" "lift_inv_lref2_aux" "lift_inv_lref2_be" "lift_inv_lref2_ge" "lift_inv_lref2_lt" "lift_inv_pair_xy_x" "lift_inv_pair_xy_y" "lift_inv_sort1" "lift_inv_sort1_aux" "lift_inv_sort2" "lift_inv_sort2_aux" "lift_lref_ge_minus" "lift_lref_ge_minus_eq" "lift_mono" "lift_refl" "lift_split" "lift_total" "lift_trans_be" "lift_trans_ge" "lift_trans_le" "lifts_bind" "lifts_cons" "lifts_flat" "lifts_inv_bind1" "lifts_inv_cons" "lifts_inv_cons_aux" "lifts_inv_flat1" "lifts_inv_lref1" "lifts_inv_nil" "lifts_inv_nil_aux" "lifts_inv_sort1" "lifts_lift_trans" "lifts_lift_trans_le" "lifts_nil" "lifts_total" "lifts_trans" "liftsv" "liftsv_cons" "liftsv_liftv_trans_le" "liftsv_nil" "liftv" "liftv_cons" "liftv_inv_cons1" "liftv_inv_cons1_aux" "liftv_inv_nil1" "liftv_inv_nil1_aux" "liftv_mono" "liftv_nil" "liftv_total" "lleq" "lleq_Y" "lleq_aaa_trans" "lleq_bind" "lleq_bind_O" "lleq_bind_repl_O" "lleq_bind_repl_SO" "lleq_canc_dx" "lleq_canc_sn" "lleq_cpx_trans" "lleq_cpxs_trans" "lleq_dec" "lleq_flat" "lleq_fpb_trans" "lleq_fpbs" "lleq_fpbs_trans" "lleq_fqu_trans" "lleq_fqup_trans" "lleq_fquq_trans" "lleq_fqus_trans" "lleq_free" "lleq_fwd_bind_O_dx" "lleq_fwd_bind_dx" "lleq_fwd_bind_sn" "lleq_fwd_drop_dx" "lleq_fwd_drop_sn" "lleq_fwd_flat_dx" "lleq_fwd_flat_sn" "lleq_fwd_length" "lleq_fwd_lref" "lleq_fwd_lref_dx" "lleq_fwd_lref_sn" "lleq_ge" "lleq_ge_up" "lleq_ind" "lleq_ind_alt_r" "lleq_intro_alt" "lleq_intro_alt_r" "lleq_inv_S" "lleq_inv_alt" "lleq_inv_alt_r" "lleq_inv_bind" "lleq_inv_bind_O" "lleq_inv_flat" "lleq_inv_lift_be" "lleq_inv_lift_ge" "lleq_inv_lift_le" "lleq_inv_lref_ge" "lleq_inv_lref_ge_bi" "lleq_inv_lref_ge_dx" "lleq_inv_lref_ge_sn" "lleq_lift_ge" "lleq_lift_le" "lleq_lpx_trans" "lleq_lpxs_trans" "lleq_lref" "lleq_lreq_repl" "lleq_lreq_trans" "lleq_nlleq_trans" "lleq_refl" "lleq_skip" "lleq_sort" "lleq_sym" "lleq_trans" "lleq_transitive" "llor" "llor_atom" "llor_skip" "llor_tail_cofrees" "llor_tail_frees" "llor_total" "lpair_ltail" "lpr" "lpr_aaa_conf" "lpr_conf" "lpr_cpcs_conf" "lpr_cpcs_trans" "lpr_cpr_conf" "lpr_cpr_conf_dx" "lpr_cpr_conf_sn" "lpr_cpr_trans" "lpr_cprs_conf" "lpr_cprs_trans" "lpr_drop_conf" "lpr_drop_trans_O1" "lpr_fpb" "lpr_fpbq" "lpr_fwd_length" "lpr_inv_atom1" "lpr_inv_atom2" "lpr_inv_pair1" "lpr_inv_pair2" "lpr_lprs" "lpr_lpx" "lpr_pair" "lpr_refl" "lprs" "lprs_aaa_conf" "lprs_conf" "lprs_cpcs_trans" "lprs_cpr_conf_dx" "lprs_cpr_conf_sn" "lprs_cpr_trans" "lprs_cprs_conf" "lprs_cprs_conf_dx" "lprs_cprs_conf_sn" "lprs_cprs_trans" "lprs_drop_conf" "lprs_drop_trans_O1" "lprs_fpbs" "lprs_fwd_length" "lprs_ind" "lprs_ind_alt" "lprs_ind_dx" "lprs_inv_atom1" "lprs_inv_atom2" "lprs_inv_pair1" "lprs_inv_pair2" "lprs_lpxs" "lprs_pair" "lprs_pair_refl" "lprs_pair2" "lprs_refl" "lprs_strap1" "lprs_strap2" "lprs_strip" "lprs_trans" "lpx" "lpx_aaa_conf" "lpx_cpx_frees_trans" "lpx_cpx_trans" "lpx_cpxs_trans" "lpx_drop_conf" "lpx_drop_trans_O1" "lpx_fqu_trans" "lpx_fqup_trans" "lpx_fquq_trans" "lpx_fqus_trans" "lpx_frees_trans" "lpx_fwd_length" "lpx_inv_atom1" "lpx_inv_atom2" "lpx_inv_pair" "lpx_inv_pair1" "lpx_inv_pair2" "lpx_lleq_fqu_trans" "lpx_lleq_fqup_trans" "lpx_lleq_fquq_trans" "lpx_lleq_fqus_trans" "lpx_lpxs" "lpx_pair" "lpx_refl" "lpxs" "lpxs_aaa_conf" "lpxs_cpx_trans" "lpxs_cpxs_trans" "lpxs_drop_conf" "lpxs_drop_trans_O1" "lpxs_fpbg" "lpxs_fpbs" "lpxs_fpbs_trans" "lpxs_fqup_trans" "lpxs_fquq_trans" "lpxs_fqus_trans" "lpxs_fwd_length" "lpxs_ind" "lpxs_ind_alt" "lpxs_ind_dx" "lpxs_inv_atom1" "lpxs_inv_atom2" "lpxs_inv_pair1" "lpxs_inv_pair2" "lpxs_lleq_fpbs" "lpxs_lleq_fqu_trans" "lpxs_lleq_fqup_trans" "lpxs_lleq_fquq_trans" "lpxs_lleq_fqus_trans" "lpxs_nlleq_inv_step_sn" "lpxs_pair" "lpxs_pair_refl" "lpxs_pair2" "lpxs_refl" "lpxs_strap1" "lpxs_strap2" "lpxs_trans" "lreq" "lreq_O2" "lreq_atom" "lreq_canc_dx" "lreq_canc_sn" "lreq_cpx_trans" "lreq_cpxs_trans" "lreq_drop_conf_be" "lreq_drop_trans_be" "lreq_frees_trans" "lreq_fwd_length" "lreq_inv_O_Y" "lreq_inv_O_Y_aux" "lreq_inv_atom1" "lreq_inv_atom1_aux" "lreq_inv_atom2" "lreq_inv_pair" "lreq_inv_pair1" "lreq_inv_pair1_aux" "lreq_inv_pair2" "lreq_inv_succ" "lreq_inv_succ1" "lreq_inv_succ1_aux" "lreq_inv_succ2" "lreq_inv_zero1" "lreq_inv_zero1_aux" "lreq_inv_zero2" "lreq_join" "lreq_lleq_trans" "lreq_lpx_trans_lleq" "lreq_lpx_trans_lleq_aux" "lreq_lpxs_trans_lleq" "lreq_lpxs_trans_lleq_aux" "lreq_pair" "lreq_pair_O_Y" "lreq_pair_lt" "lreq_refl" "lreq_succ" "lreq_succ_lt" "lreq_sym" "lreq_trans" "lreq_zero" "lstas" "lstas_aaa_conf" "lstas_appl" "lstas_bind" "lstas_cast" "lstas_conf" "lstas_conf_le" "lstas_correct" "lstas_cpcs_lpr" "lstas_cpr" "lstas_cpr_aux" "lstas_cpr_lpr" "lstas_cpr_lpr_aux" "lstas_cprs_lpr" "lstas_cprs_lpr_aux" "lstas_cpxs" "lstas_da_conf" "lstas_fpbg" "lstas_fpbs" "lstas_inv_appl1" "lstas_inv_appl1_aux" "lstas_inv_bind1" "lstas_inv_bind1_aux" "lstas_inv_cast1" "lstas_inv_cast1_aux" "lstas_inv_da" "lstas_inv_da_ge" "lstas_inv_lift1" "lstas_inv_lref1" "lstas_inv_lref1_O" "lstas_inv_lref1_S" "lstas_inv_lref1_aux" "lstas_inv_refl_pos" "lstas_inv_sort1" "lstas_inv_sort1_aux" "lstas_ldef" "lstas_lift" "lstas_lstas" "lstas_mono" "lstas_scpds" "lstas_scpds_aux" "lstas_scpds_trans" "lstas_scpes_trans" "lstas_sort" "lstas_split" "lstas_split_aux" "lstas_succ" "lstas_trans" "lstas_zero" "lsuba" "lsuba_aaa_conf" "lsuba_aaa_trans" "lsuba_atom" "lsuba_beta" "lsuba_drop_O1_conf" "lsuba_drop_O1_trans" "lsuba_fwd_lsubr" "lsuba_inv_atom1" "lsuba_inv_atom1_aux" "lsuba_inv_atom2" "lsuba_inv_atom2_aux" "lsuba_inv_pair1" "lsuba_inv_pair1_aux" "lsuba_inv_pair2" "lsuba_inv_pair2_aux" "lsuba_lsubc" "lsuba_pair" "lsuba_refl" "lsuba_trans" "lsubc" "lsubc_atom" "lsubc_beta" "lsubc_drop_O1_trans" "lsubc_fwd_lsubr" "lsubc_inv_atom1" "lsubc_inv_atom1_aux" "lsubc_inv_atom2" "lsubc_inv_atom2_aux" "lsubc_inv_pair1" "lsubc_inv_pair1_aux" "lsubc_inv_pair2" "lsubc_inv_pair2_aux" "lsubc_pair" "lsubc_refl" "lsubd" "lsubd_atom" "lsubd_beta" "lsubd_da_conf" "lsubd_da_trans" "lsubd_drop_O1_conf" "lsubd_drop_O1_trans" "lsubd_fwd_lsubr" "lsubd_inv_atom1" "lsubd_inv_atom1_aux" "lsubd_inv_atom2" "lsubd_inv_atom2_aux" "lsubd_inv_pair1" "lsubd_inv_pair1_aux" "lsubd_inv_pair2" "lsubd_inv_pair2_aux" "lsubd_pair" "lsubd_refl" "lsubd_trans" "lsubr" "lsubr_atom" "lsubr_beta" "lsubr_cpcs_trans" "lsubr_cpr_trans" "lsubr_cprs_trans" "lsubr_cpx_trans" "lsubr_cpxs_trans" "lsubr_fwd_drop2_abbr" "lsubr_fwd_drop2_pair" "lsubr_fwd_length" "lsubr_inv_abbr2" "lsubr_inv_abbr2_aux" "lsubr_inv_abst1" "lsubr_inv_abst1_aux" "lsubr_inv_atom1" "lsubr_inv_atom1_aux" "lsubr_inv_pair1" "lsubr_inv_pair1_aux" "lsubr_pair" "lsubr_refl" "lsubr_trans" "lsubsv" "lsubsv_atom" "lsubsv_beta" "lsubsv_cpcs_trans" "lsubsv_cprs_trans" "lsubsv_drop_O1_conf" "lsubsv_drop_O1_trans" "lsubsv_fwd_lsuba" "lsubsv_fwd_lsubd" "lsubsv_fwd_lsubr" "lsubsv_inv_atom1" "lsubsv_inv_atom1_aux" "lsubsv_inv_atom2" "lsubsv_inv_atom2_aux" "lsubsv_inv_pair1" "lsubsv_inv_pair1_aux" "lsubsv_inv_pair2" "lsubsv_inv_pair2_aux" "lsubsv_lstas_trans" "lsubsv_pair" "lsubsv_refl" "lsubsv_scpds_trans" "lsubsv_snv_trans" "lsubsv_sta_trans" "lsuby" "lsuby_O2" "lsuby_atom" "lsuby_cpy_trans" "lsuby_cpys_trans" "lsuby_cpysa_trans" "lsuby_drop_trans_be" "lsuby_fwd_length" "lsuby_inv_atom1" "lsuby_inv_atom1_aux" "lsuby_inv_pair1" "lsuby_inv_pair1_aux" "lsuby_inv_pair2" "lsuby_inv_pair2_aux" "lsuby_inv_succ1" "lsuby_inv_succ1_aux" "lsuby_inv_succ2" "lsuby_inv_succ2_aux" "lsuby_inv_zero1" "lsuby_inv_zero1_aux" "lsuby_inv_zero2" "lsuby_inv_zero2_aux" "lsuby_pair" "lsuby_pair_O_Y" "lsuby_pair_lt" "lsuby_refl" "lsuby_succ" "lsuby_succ_lt" "lsuby_sym" "lsuby_trans" "lsuby_zero" "lsx" "lsx_atom" "lsx_bind" "lsx_bind_lpxs_aux" "lsx_cpx_trans_O" "lsx_cpx_trans_lcosx" "lsx_flat" "lsx_flat_lpxs" "lsx_fwd_bind_dx" "lsx_fwd_bind_sn" "lsx_fwd_flat_dx" "lsx_fwd_flat_sn" "lsx_fwd_lref_be" "lsx_fwd_pair_sn" "lsx_ge" "lsx_ge_up" "lsx_ind" "lsx_ind_alt" "lsx_intro" "lsx_intro_alt" "lsx_inv_bind" "lsx_inv_flat" "lsx_inv_lift_be" "lsx_inv_lift_ge" "lsx_inv_lift_le" "lsx_lift_ge" "lsx_lift_le" "lsx_lleq_trans" "lsx_lpx_trans" "lsx_lpxs_trans" "lsx_lref_be" "lsx_lref_be_lpxs" "lsx_lref_free" "lsx_lref_skip" "lsx_lreq_conf" "lsx_lsxa" "lsx_sort" "lsxa" "lsxa_ind" "lsxa_intro" "lsxa_intro_aux" "lsxa_intro_lpx" "lsxa_inv_lsx" "lsxa_lleq_trans" "lsxa_lpxs_trans" "ltail_length" "lw" "lw_pair" "minuss" "minuss_ge" "minuss_inv_cons1" "minuss_inv_cons1_aux" "minuss_inv_cons1_ge" "minuss_inv_cons1_lt" "minuss_inv_nil1" "minuss_inv_nil1_aux" "minuss_lt" "minuss_nil" "mk_gcp" "mk_gcr" "mk_sd" "mk_sh" "nexts_dec" "nexts_inj" "nexts_le" "nexts_lt" "nf" "nlift_bind_dx" "nlift_bind_sn" "nlift_flat_dx" "nlift_flat_sn" "nlift_inv_bind" "nlift_inv_flat" "nlift_inv_lref_be_SO" "nlift_lref_be_SO" "nlleq_inv_bind" "nlleq_inv_bind_O" "nlleq_inv_flat" "nlleq_lleq_div" "pluss" "pluss_inv_cons2" "pluss_inv_nil2" "rfw" "rfw_lpair_dx" "rfw_lpair_sn" "rfw_shift" "rfw_tpair_dx" "rfw_tpair_sn" "ri2" "scpds" "scpds_aaa_conf" "scpds_conf_eq" "scpds_cpr_lpr_aux" "scpds_cprs_trans" "scpds_div" "scpds_fwd_cprs" "scpds_fwd_cpxs" "scpds_inv_abbr_abst" "scpds_inv_abst1" "scpds_inv_lift1" "scpds_inv_lstas_eq" "scpds_lift" "scpds_strap1" "scpds_strap2" "scpes" "scpes_aaa_mono" "scpes_canc_dx" "scpes_canc_sn" "scpes_cpr_lpr_aux" "scpes_inv_abst2" "scpes_inv_lstas_eq" "scpes_le_aux" "scpes_refl" "scpes_sym" "scpes_trans" "sd" "sd_O" "sd_SO" "sd_d" "sd_d_SS" "sd_d_correct" "shnv" "shnv_cast" "shnv_inv_cast" "shnv_inv_cast_aux" "shnv_inv_snv" "snv" "snv_appl" "snv_bind" "snv_cast" "snv_cast_scpes" "snv_cpr_lpr" "snv_cpr_lpr_aux" "snv_cprs_lpr" "snv_cprs_lpr_aux" "snv_extended" "snv_fqu_conf" "snv_fqup_conf" "snv_fquq_conf" "snv_fqus_conf" "snv_fwd_aaa" "snv_fwd_da" "snv_fwd_fsb" "snv_fwd_lstas" "snv_inv_appl" "snv_inv_appl_aux" "snv_inv_bind" "snv_inv_bind_aux" "snv_inv_cast" "snv_inv_cast_aux" "snv_inv_lift" "snv_inv_lref" "snv_inv_lref_aux" "snv_lift" "snv_lref" "snv_lstas" "snv_lstas_aux" "snv_preserve" "snv_restricted" "snv_shnv_cast" "snv_sort" "sta_cprs_scpds" "sta_cpx" "sta_cpx_aux" "sta_fpb" "sta_fpbg" "sta_fpbq" "sta_fpbs" "sta_ldec" "tir_atom" "tix_lref" "tpr_cpr" "tprs_cprs" "trr_inv_atom" "trx_inv_atom" "tsts" "tsts_atom" "tsts_canc_dx" "tsts_canc_sn" "tsts_dec" "tsts_inv_atom1" "tsts_inv_atom1_aux" "tsts_inv_atom2" "tsts_inv_atom2_aux" "tsts_inv_pair1" "tsts_inv_pair1_aux" "tsts_inv_pair2" "tsts_inv_pair2_aux" "tsts_pair" "tsts_refl" "tsts_sym" "tsts_trans" "tw" "tw_pos" "unfold" "unfold_bind" "unfold_flat" "unfold_lref" "unfold_sort")
+ (old "1.1/csuba_drop_abbr" "1.1/csuba_drop_abbr_rev" "1.1/csuba_drop_abst" "1.1/csuba_drop_abst_rev" "1.1/csuba_gen_abbr" "1.1/csuba_gen_abbr_rev" "1.1/csuba_gen_abst" "1.1/csuba_gen_abst_rev" "1.1/csuba_gen_bind" "1.1/csuba_gen_bind_rev" "1.1/csuba_gen_flat" "1.1/csuba_gen_flat_rev" "1.1/csuba_head" "1.1/csubc_abst" "1.1/csubc_arity_conf" "1.1/csubc_arity_trans" "1.1/csubc_csuba" "1.1/csubc_drop_conf_O" "1.1/csubc_drop_conf_rev" "1.1/csubc_drop1_conf_rev" "1.1/csubc_gen_head_l" "1.1/csubc_gen_head_r" "1.1/csubc_gen_sort_l" "1.1/csubc_gen_sort_r" "1.1/csubc_head" "1.1/csubc_refl" "1.1/csubc_sort" "1.1/cweight" "1.1/drop_csubc_trans" "1.1/drop1" "1.1/drop1_cons" "1.1/drop1_cons_tail" "1.1/drop1_csubc_trans" "1.1/drop1_nil" "1.1/ex1_arity" "1.1/ex1_c" "1.1/ex1_t" "1.1/ex2_arity" "1.1/ex2_c" "1.1/ex2_nf2" "1.1/ex2_t" "1.1/gz" "1.1/lift_free_sym" "1.1/lift1" "1.1/lift1_cons_tail" "1.1/lift1_xhg" "1.1/lifts_tapp" "1.1/lifts1" "1.1/lifts1_cons" "1.1/lifts1_nil" "1.1/minus_s_s" "1.1/mk_G" "1.1/nf0_dec" "1.1/nf2_appls_lref" "1.1/nf2_gen__nf2_gen_aux" "1.1/nf2_gen_beta" "1.1/nf2_gen_cast" "1.1/nf2_gen_flat" "1.1/nf2_gen_lref" "1.1/nf2_iso_appls_lref" "1.1/nf2_lift1" "1.1/nf2_pr3_confluence" "1.1/nf2_pr3_unfold" "1.1/nf2_sn3" "1.1/pc3" "1.1/pc3_abst_dec" "1.1/pc3_dec" "1.1/pc3_eta" "1.1/pc3_gen_abst" "1.1/pc3_gen_abst_shift" "1.1/pc3_gen_appls_lref_abst" "1.1/pc3_gen_appls_lref_sort" "1.1/pc3_gen_appls_sort_abst" "1.1/pc3_gen_cabbr" "1.1/pc3_gen_lift" "1.1/pc3_gen_lift_abst" "1.1/pc3_gen_not_abst" "1.1/pc3_gen_sort" "1.1/pc3_gen_sort_abst" "1.1/pc3_head_1" "1.1/pc3_head_12" "1.1/pc3_head_2" "1.1/pc3_head_21" "1.1/pc3_ind_left" "1.1/pc3_ind_left__pc3_left_pc3" "1.1/pc3_ind_left__pc3_left_pr3" "1.1/pc3_ind_left__pc3_left_sym" "1.1/pc3_ind_left__pc3_left_trans" "1.1/pc3_ind_left__pc3_pc3_left" "1.1/pc3_left" "1.1/pc3_left_r" "1.1/pc3_left_ur" "1.1/pc3_left_ux" "1.1/pc3_lift" "1.1/pc3_nf2" "1.1/pc3_nf2_unfold" "1.1/pc3_pr2_pr2_t" "1.1/pc3_pr2_pr3_t" "1.1/pc3_pr2_r" "1.1/pc3_pr2_u" "1.1/pc3_pr2_u2" "1.1/pc3_pr2_x" "1.1/pc3_pr3_conf" "1.1/pc3_pr3_pc3_t" "1.1/pc3_pr3_r" "1.1/pc3_pr3_t" "1.1/pc3_pr3_x" "1.1/pc3_refl" "1.1/pc3_s" "1.1/pc3_t" "1.1/pc3_thin_dx" "1.1/pr2" "1.1/pr2_change" "1.1/pr2_gen_cabbr" "1.1/pr2_subst1" "1.1/pr3" "1.1/pr3_confluence" "1.1/pr3_eta" "1.1/pr3_flat" "1.1/pr3_gen_abbr" "1.1/pr3_gen_abst" "1.1/pr3_gen_appl" "1.1/pr3_gen_bind" "1.1/pr3_gen_cabbr" "1.1/pr3_gen_cast" "1.1/pr3_gen_lift" "1.1/pr3_gen_lref" "1.1/pr3_gen_sort" "1.1/pr3_head_1" "1.1/pr3_head_12" "1.1/pr3_head_2" "1.1/pr3_head_21" "1.1/pr3_iso_appl_bind" "1.1/pr3_iso_appls_abbr" "1.1/pr3_iso_appls_appl_bind" "1.1/pr3_iso_appls_beta" "1.1/pr3_iso_appls_bind" "1.1/pr3_iso_appls_cast" "1.1/pr3_iso_beta" "1.1/pr3_lift" "1.1/pr3_pr2" "1.1/pr3_pr2_pr2_t" "1.1/pr3_pr2_pr3_t" "1.1/pr3_pr3_pr3_t" "1.1/pr3_refl" "1.1/pr3_sing" "1.1/pr3_strip" "1.1/pr3_subst1" "1.1/pr3_t" "1.1/pr3_thin_dx" "1.1/ptrans" "1.1/r" "1.1/s" "1.1/sc3" "1.1/sc3_abbr" "1.1/sc3_abst" "1.1/sc3_appl" "1.1/sc3_arity" "1.1/sc3_arity_csubc" "1.1/sc3_arity_gen" "1.1/sc3_bind" "1.1/sc3_cast" "1.1/sc3_lift" "1.1/sc3_lift1" "1.1/sc3_props__sc3_sn3_abst" "1.1/sc3_repl" "1.1/sc3_sn3" "1.1/sn3" "1.1/sn3_abbr" "1.1/sn3_appl_abbr" "1.1/sn3_appl_appl" "1.1/sn3_appl_appls" "1.1/sn3_appl_beta" "1.1/sn3_appl_bind" "1.1/sn3_appl_cast" "1.1/sn3_appl_lref" "1.1/sn3_appls_abbr" "1.1/sn3_appls_beta" "1.1/sn3_appls_bind" "1.1/sn3_appls_cast" "1.1/sn3_appls_lref" "1.1/sn3_beta" "1.1/sn3_bind" "1.1/sn3_cast" "1.1/sn3_cdelta" "1.1/sn3_change" "1.1/sn3_cpr3_trans" "1.1/sn3_gen_bind" "1.1/sn3_gen_def" "1.1/sn3_gen_flat" "1.1/sn3_gen_head" "1.1/sn3_gen_lift" "1.1/sn3_lift" "1.1/sn3_nf2" "1.1/sn3_pr2_intro" "1.1/sn3_pr3_trans" "1.1/sn3_shift" "1.1/sn3_sing" "1.1/sns3" "1.1/sns3_lifts" "1.1/sns3_lifts1" "1.1/subst1" "1.1/subst1_confluence_eq" "1.1/subst1_confluence_lift" "1.1/subst1_confluence_neq" "1.1/subst1_ex" "1.1/subst1_gen_head" "1.1/subst1_gen_lift_eq" "1.1/subst1_gen_lift_ge" "1.1/subst1_gen_lift_lt" "1.1/subst1_gen_lref" "1.1/subst1_gen_sort" "1.1/subst1_head" "1.1/subst1_lift_S" "1.1/subst1_lift_ge" "1.1/subst1_lift_lt" "1.1/subst1_refl" "1.1/subst1_single" "1.1/subst1_subst1" "1.1/subst1_subst1_back" "1.1/subst1_trans")
+ (new "acr" "acr_aaa" "acr_aaa_csubc_lifts" "acr_abst" "acr_gcr" "candidate" "ceq" "cfun" "cnr_inv_appl" "cnr_inv_delta" "cnr_inv_eps" "cnr_inv_lift" "cnr_inv_zeta" "cnr_lref_free" "cpc" "cpc_conf" "cpc_cpcs" "cpc_fwd_cpr" "cpc_refl" "cpc_sym" "cpcs" "cpcs_aaa_mono" "cpcs_bind_dx" "cpcs_bind_sn" "cpcs_bind1" "cpcs_bind2" "cpcs_canc_dx" "cpcs_canc_sn" "cpcs_cpr_conf" "cpcs_cpr_div" "cpcs_cpr_strap1" "cpcs_cpr_strap2" "cpcs_cprs_conf" "cpcs_cprs_div" "cpcs_cprs_dx" "cpcs_cprs_sn" "cpcs_cprs_strap1" "cpcs_cprs_strap2" "cpcs_flat" "cpcs_flat_dx_cpr_rev" "cpcs_ind" "cpcs_ind_dx" "cpcs_inv_abst_dx" "cpcs_inv_abst_sn" "cpcs_inv_abst1" "cpcs_inv_abst2" "cpcs_inv_cprs" "cpcs_inv_lift" "cpcs_inv_sort" "cpcs_inv_sort_abst" "cpcs_lift" "cpcs_refl" "cpcs_scpes" "cpcs_strap1" "cpcs_strap2" "cpcs_strip" "cpcs_sym" "cpcs_trans" "cpr" "cpr_ApplOmega_12" "cpr_ApplOmega_23" "cpr_Omega_12" "cpr_Omega_21" "cpr_atom" "cpr_beta" "cpr_bind" "cpr_bind2" "cpr_cpcs_dx" "cpr_cpcs_sn" "cpr_cprs" "cpr_cprs_conf_cpcs" "cpr_cprs_div" "cpr_delift" "cpr_delta" "cpr_div" "cpr_eps" "cpr_flat" "cpr_fwd_bind1_minus" "cpr_inv_atom1" "cpr_inv_atom1_aux" "cpr_inv_bind1" "cpr_inv_bind1_aux" "cpr_inv_flat1" "cpr_inv_flat1_aux" "cpr_refl" "cpr_theta" "cpr_zeta" "cpre" "cpre_mono" "cprs" "cprs_beta" "cprs_beta_dx" "cprs_beta_rc" "cprs_bind" "cprs_bind_dx" "cprs_bind2" "cprs_bind2_dx" "cprs_conf" "cprs_conf_cpcs" "cprs_cpr_conf_cpcs" "cprs_cpr_div" "cprs_delta" "cprs_div" "cprs_eps" "cprs_flat" "cprs_flat_dx" "cprs_flat_sn" "cprs_ind" "cprs_ind_dx" "cprs_inv_abbr1" "cprs_inv_abst" "cprs_inv_abst1" "cprs_inv_appl1" "cprs_inv_cast1" "cprs_inv_cnr1" "cprs_inv_lift1" "cprs_inv_lref1" "cprs_inv_sort1" "cprs_lift" "cprs_refl" "cprs_scpds_div" "cprs_strap1" "cprs_strap2" "cprs_strip" "cprs_theta" "cprs_theta_dx" "cprs_theta_rc" "cprs_trans" "cprs_zeta" "deg_O" "deg_SO" "deg_SO_gt" "deg_SO_inv_pos" "deg_SO_inv_pos_aux" "deg_SO_pos" "deg_SO_refl" "deg_SO_zero" "deg_inv_prec" "deg_inv_pred" "deg_iter" "deg_next_SO" "destruct_apair_apair_aux" "destruct_lpair_lpair_aux" "destruct_sort_sort_aux" "destruct_tatom_tatom_aux" "destruct_tpair_tpair_aux" "discr_apair_xy_x" "discr_apair_xy_y" "discr_lpair_x_xy" "discr_tpair_xy_x" "drop_inv_O1_gt" "drop_inv_O1_pair1" "drop_inv_O1_pair1_aux" "drop_inv_O1_pair2" "drop_inv_drop1" "drop_inv_pair1" "drop_lsubc_trans" "drop_pair" "drop_trans_lt" "drops" "drops_cons" "drops_drop_trans" "drops_inv_skip2" "drops_lsubc_trans" "drops_nil" "eq_aarity_dec" "eq_false_inv_tpair_dx" "eq_false_inv_tpair_sn" "eq_item0_dec" "eq_lenv_dec" "fleq" "fleq_canc_dx" "fleq_canc_sn" "fleq_intro" "fleq_inv_gen" "fleq_refl" "fleq_sym" "fleq_trans" "fqup" "fqup_ApplOmega_13" "fqup_bind_dx" "fqup_bind_dx_flat_dx" "fqup_drop" "fqup_flat_dx" "fqup_flat_dx_bind_dx" "fqup_flat_dx_pair_sn" "fqup_fqus" "fqup_fqus_trans" "fqup_fwd_fw" "fqup_ind" "fqup_ind_dx" "fqup_inv_step_sn" "fqup_lref" "fqup_pair_sn" "fqup_strap1" "fqup_strap2" "fqup_trans" "fqup_wf_ind" "fqup_wf_ind_eq" "fqus" "fqus_drop" "fqus_fqup_trans" "fqus_fwd_fw" "fqus_ind" "fqus_ind_dx" "fqus_inv_gen" "fqus_refl" "fqus_strap1" "fqus_strap2" "fqus_trans" "fw" "fw_lpair_sn" "fw_shift" "fw_tpair_dx" "fw_tpair_sn" "gcp" "gcp0_lifts" "gcp2_lifts" "gcp2_lifts_all" "gcr" "gcr_aaa" "gcr_lift" "gcr_lifts" "ib2" "lift_conf_O1" "lift_conf_be" "lift_div_be" "lift_fwd_pair1" "lift_fwd_pair2" "lift_fwd_tw" "lift_inv_O2" "lift_inv_O2_aux" "lift_inv_bind1" "lift_inv_bind1_aux" "lift_inv_flat1" "lift_inv_flat1_aux" "lift_inv_lref1" "lift_inv_lref1_aux" "lift_inv_lref1_ge" "lift_inv_lref1_lt" "lift_inv_sort1" "lift_inv_sort1_aux" "lifts" "lifts_bind" "lifts_cons" "lifts_flat" "lifts_inv_cons" "lifts_inv_cons_aux" "lifts_inv_nil" "lifts_inv_nil_aux" "lifts_nil" "lifts_total" "liftsv" "liftsv_cons" "liftsv_nil" "lleq" "lleq_Y" "lleq_aaa_trans" "lleq_bind" "lleq_bind_O" "lleq_bind_repl_O" "lleq_bind_repl_SO" "lleq_canc_dx" "lleq_canc_sn" "lleq_dec" "lleq_flat" "lleq_fqup_trans" "lleq_fqus_trans" "lleq_free" "lleq_fwd_bind_O_dx" "lleq_fwd_bind_dx" "lleq_fwd_bind_sn" "lleq_fwd_drop_dx" "lleq_fwd_drop_sn" "lleq_fwd_flat_dx" "lleq_fwd_flat_sn" "lleq_fwd_length" "lleq_fwd_lref" "lleq_fwd_lref_dx" "lleq_fwd_lref_sn" "lleq_ge" "lleq_ge_up" "lleq_ind" "lleq_ind_alt_r" "lleq_intro_alt" "lleq_intro_alt_r" "lleq_inv_S" "lleq_inv_alt" "lleq_inv_alt_r" "lleq_inv_bind" "lleq_inv_bind_O" "lleq_inv_flat" "lleq_inv_lift_be" "lleq_inv_lift_ge" "lleq_inv_lift_le" "lleq_inv_lref_ge" "lleq_inv_lref_ge_bi" "lleq_inv_lref_ge_dx" "lleq_inv_lref_ge_sn" "lleq_lift_ge" "lleq_lift_le" "lleq_lref" "lleq_lreq_repl" "lleq_lreq_trans" "lleq_nlleq_trans" "lleq_refl" "lleq_skip" "lleq_sort" "lleq_sym" "lleq_trans" "lleq_transitive" "lreq" "lreq_O2" "lreq_atom" "lreq_canc_dx" "lreq_canc_sn" "lreq_fwd_length" "lreq_inv_O_Y" "lreq_inv_O_Y_aux" "lreq_inv_atom1" "lreq_inv_atom1_aux" "lreq_inv_atom2" "lreq_inv_pair" "lreq_inv_pair1" "lreq_inv_pair1_aux" "lreq_inv_pair2" "lreq_inv_succ" "lreq_inv_succ1" "lreq_inv_succ1_aux" "lreq_inv_succ2" "lreq_inv_zero1" "lreq_inv_zero1_aux" "lreq_inv_zero2" "lreq_join" "lreq_lleq_trans" "lreq_pair" "lreq_pair_O_Y" "lreq_pair_lt" "lreq_refl" "lreq_succ" "lreq_succ_lt" "lreq_sym" "lreq_trans" "lreq_zero" "lsuba_drop_O1_conf" "lsuba_drop_O1_trans" "lsuba_fwd_lsubr" "lsuba_inv_atom1" "lsuba_inv_atom1_aux" "lsuba_inv_atom2" "lsuba_inv_atom2_aux" "lsuba_inv_pair1" "lsuba_inv_pair1_aux" "lsuba_inv_pair2" "lsuba_inv_pair2_aux" "lsuba_lsubc" "lsuba_pair" "lsuba_trans" "lsubc_atom" "lsubc_beta" "lsubc_drop_O1_trans" "lsubc_fwd_lsubr" "lsubc_inv_atom1" "lsubc_inv_atom1_aux" "lsubc_inv_atom2" "lsubc_inv_atom2_aux" "lsubc_inv_pair1" "lsubc_inv_pair1_aux" "lsubc_inv_pair2" "lsubc_inv_pair2_aux" "lsubc_pair" "lsubc_refl" "lsubd" "lsubd_atom" "lsubd_beta" "lsubd_drop_O1_conf" "lsubd_drop_O1_trans" "lsubd_fwd_lsubr" "lsubd_inv_atom1" "lsubd_inv_atom1_aux" "lsubd_inv_atom2" "lsubd_inv_atom2_aux" "lsubd_inv_pair1" "lsubd_inv_pair1_aux" "lsubd_inv_pair2" "lsubd_inv_pair2_aux" "lsubd_pair" "lsubd_refl" "lsubd_trans" "lsubr" "lsubr_atom" "lsubr_beta" "lsubr_cpcs_trans" "lsubr_cpr_trans" "lsubr_cprs_trans" "lsubr_fwd_drop2_abbr" "lsubr_fwd_drop2_pair" "lsubr_fwd_length" "lsubr_inv_abbr2" "lsubr_inv_abbr2_aux" "lsubr_inv_abst1" "lsubr_inv_abst1_aux" "lsubr_inv_atom1" "lsubr_inv_atom1_aux" "lsubr_inv_pair1" "lsubr_inv_pair1_aux" "lsubr_pair" "lsubr_refl" "lsubr_trans" "lsubsv" "lsubsv_atom" "lsubsv_beta" "lsubsv_cpcs_trans" "lsubsv_cprs_trans" "lsubsv_drop_O1_conf" "lsubsv_drop_O1_trans" "lsubsv_fwd_lsuba" "lsubsv_fwd_lsubd" "lsubsv_fwd_lsubr" "lsubsv_inv_atom1" "lsubsv_inv_atom1_aux" "lsubsv_inv_atom2" "lsubsv_inv_atom2_aux" "lsubsv_inv_pair1" "lsubsv_inv_pair1_aux" "lsubsv_inv_pair2" "lsubsv_inv_pair2_aux" "lsubsv_pair" "lsubsv_refl" "lsubsv_scpds_trans" "lsubsv_snv_trans" "lsubsv_sta_trans" "lsuby" "lsuby_O2" "lsuby_atom" "lsuby_drop_trans_be" "lsuby_fwd_length" "lsuby_inv_atom1" "lsuby_inv_atom1_aux" "lsuby_inv_pair1" "lsuby_inv_pair1_aux" "lsuby_inv_pair2" "lsuby_inv_pair2_aux" "lsuby_inv_succ1" "lsuby_inv_succ1_aux" "lsuby_inv_succ2" "lsuby_inv_succ2_aux" "lsuby_inv_zero1" "lsuby_inv_zero1_aux" "lsuby_inv_zero2" "lsuby_inv_zero2_aux" "lsuby_pair" "lsuby_pair_O_Y" "lsuby_pair_lt" "lsuby_refl" "lsuby_succ" "lsuby_succ_lt" "lsuby_sym" "lsuby_trans" "lsuby_zero" "lsx" "lsx_atom" "lsx_bind" "lsx_flat" "lsx_fwd_bind_dx" "lsx_fwd_bind_sn" "lsx_fwd_flat_dx" "lsx_fwd_flat_sn" "lsx_fwd_lref_be" "lsx_fwd_pair_sn" "lsx_ge" "lsx_ge_up" "lsx_ind" "lsx_ind_alt" "lsx_intro" "lsx_intro_alt" "lsx_inv_bind" "lsx_inv_flat" "lsx_inv_lift_be" "lsx_inv_lift_ge" "lsx_inv_lift_le" "lsx_lift_ge" "lsx_lift_le" "lsx_lleq_trans" "lsx_lref_be" "lsx_lref_free" "lsx_lref_skip" "lsx_lreq_conf" "lsx_lsxa" "lsx_sort" "lsxa" "lsxa_ind" "lsxa_intro" "lsxa_intro_aux" "lsxa_inv_lsx" "lsxa_lleq_trans" "ltail_length" "lw" "lw_pair" "minuss" "minuss_ge" "minuss_inv_cons1" "minuss_inv_cons1_aux" "minuss_inv_cons1_ge" "minuss_inv_cons1_lt" "minuss_inv_nil1" "minuss_inv_nil1_aux" "minuss_lt" "minuss_nil" "mk_gcp" "mk_gcr" "mk_sd" "mk_sh" "nexts_dec" "nexts_inj" "nexts_le" "nexts_lt" "nf" "nlleq_inv_bind" "nlleq_inv_bind_O" "nlleq_inv_flat" "nlleq_lleq_div" "pluss" "pluss_inv_cons2" "pluss_inv_nil2" "ri2" "scpds" "scpds_aaa_conf" "scpds_conf_eq" "scpds_cprs_trans" "scpds_div" "scpds_fwd_cprs" "scpds_inv_abbr_abst" "scpds_inv_abst1" "scpds_inv_lift1" "scpds_lift" "scpds_strap1" "scpds_strap2" "scpes" "scpes_aaa_mono" "scpes_canc_dx" "scpes_canc_sn" "scpes_inv_abst2" "scpes_le_aux" "scpes_refl" "scpes_sym" "scpes_trans" "sd" "sd_O" "sd_SO" "sd_d" "sd_d_SS" "sd_d_correct" "shnv" "shnv_cast" "shnv_inv_cast" "shnv_inv_cast_aux" "shnv_inv_snv" "snv" "snv_appl" "snv_bind" "snv_cast" "snv_cast_scpes" "snv_extended" "snv_fqup_conf" "snv_fqus_conf" "snv_fwd_aaa" "snv_inv_appl" "snv_inv_appl_aux" "snv_inv_bind" "snv_inv_bind_aux" "snv_inv_cast" "snv_inv_cast_aux" "snv_inv_lift" "snv_inv_lref" "snv_inv_lref_aux" "snv_lift" "snv_lref" "snv_preserve" "snv_restricted" "snv_shnv_cast" "snv_sort" "sta_cprs_scpds" "sta_ldec" "tir_atom" "tix_lref" "tprs_cprs" "unfold" "unfold_bind" "unfold_flat" "unfold_lref" "unfold_sort")
)